И вот на протяжении двух тысяч лет ученые умы античных времён, арабского средневековья и просвещённой Европы пытались изъять пятый постулат из употребления, доказывая его как теорему. Их мученья продолжались вплоть до начала XIX века. И всё тщетно. А почему тщетно? А потому, что все они, явно или тайно, шли в своих доказательствах по замкнутому кругу. Как белка в колесе. И никто из них, ввиду своего плоского мышления, даже близко не подумал выйти из пределов плоского пространства. Если обобщить эту историю, то все доказательства учёных звучали примерно так: дано масло. Требуется доказать, что оно масляное. Доказательство: оно масляное, потому, что оно масло.
Конец этому сизифову труду положил математик из России, Николай Лобачевский. Он тоже взялся было доказать пятый постулат, как теорему. Но быстро сообразил, что в рамках плоской эвклидовой геометрии это сделать невозможно. Тогда он допустил, что реальное пространство не обязательно должно быть эвклидовым и… проблема сразу решилась. Он открыл новую геометрию. Неевклидовую. Геометрию, в которую эвклидова геометрия вошла, как частный случай. Вот такие чудеса. А знаменитый пятый постулат послужил входом в дивный мир этой новой геометрии. Он был всё равно, что золотой ключик к таинственной дверце в каморке папы Карло. Но это уже другая история…
Так в чём же камень преткновения? Как же звучит этот непокорный пятый постулат в оригинале. А звучит его формулировка так: «И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых». Это формулировка самого Эвклида. Ну, как? С элементарностью и очевидностью тут, в общем-то, не очень. Не мудрено, что его столько времени хотели исключить из утверждений, принимаемых на веру и пытались доказать, как теорему.
А вот как звучит современная трактовка пятого постулата: «Если при пересечении двух прямых третей сумма внутренних односторонних углов меньше 180 градусов, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше 180 градусов». Ну, что? Прибавилась простота и ясность в его формулировку? Не похоже.
Ну и, наконец, самая простая трактовка знаменитого постулата. Тоже современная: «