0.
Но это же линейное уравнение! Оно имеет свою теорию, свои изюминки.
Пусть будут «мухи отдельно, котлеты отдельно».
Теперь понятно, что требование a ≠ 0 необходимо для сохранения в квадратном уравнении второй степени – квадрата – неизвестного. Вот этот признак будет определяющим!
В дальнейшем, говоря о квадратном уравнении, мы будем помнить, что старший коэффициент не равен нулю, не оговаривая это каждый раз. Договорились?
Тогда уравнение f (a) x>2 + g (a) x + h (a) = 0 правильно называть уравнением с параметром второй степени, которое при определённых условиях может быть квадратным, а может им и не быть (стать линейным).
Однако не будем торопиться. Наличие второй степени неизвестного – необходимый, но не достаточный признак квадратного уравнения.
Рассмотрим следующие уравнения:
ax>2 + by + c = 0 и ax>2 + bx>3 + c = 0.
Выполним сравнительный анализ этих уравнений с квадратным ax>2 + bx + c = 0 по трём признакам:
– наличие второй степени неизвестной,
– наибольшая степень неизвестной,
– количество неизвестных.
Зафиксируем для каждого уравнения эти параметры.
Результаты сравнительного анализа организуем в таблицу.
Итак, что мы имеем?
Наличие второй степени неизвестного является общим для всех трёх уравнений. Но по двум другим признакам сравнения, квадратное уравнение отличается: в квадратном уравнении вторая степень неизвестной является наибольшей и неизвестная только одна.
Именно это и важно!
Собственно говоря, квадратным является целое рациональное (или по-другому – алгебраическое) уравнение второй степени с одним неизвестным2.
Процесс ограничения класса алгебраических уравнений можно представить в двух направлениях:
алгебраическое уравнение → первой степени, второй степени и так далее;
алгебраическое уравнение → с одной неизвестной, с двумя неизвестными и так далее.
Приведём примеры:
ax + b = 0 – уравнение первой степени с одной неизвестной;
ax + by + c = 0 – уравнение первой степени с двумя неизвестными;
ax>2 + bx + c = 0 – уравнение второй степени с одной неизвестной;
ax>2 + bxy + cy>2 + kx + ly + m = 0 – уравнение второй степени с двумя неизвестными.
Тогда ближайшими родовыми понятиями для квадратного уравнения будут: алгебраическое уравнение второй степени или алгебраическое уравнение с одним неизвестным. Выбирая в качестве родового понятия разные объекты, мы сможем получить различные формулировки определения квадратного уравнения. Попробуйте!