Наконец, рассмотрим правую часть равенства в определении квадратного уравнения. Она представляет собой конкретное число – ноль. А может быть что-нибудь другое?
Если мы хотим видеть квадратное уравнение «в чистом виде», то ничего, кроме нуля, в правой части быть не должно. Но…
Рассмотрим уравнение ax>2 + bx + c = m, где m число отличное от нуля. Тогда мы, основываясь на равносильности преобразований уравнений3, можем записать
ax>2 + bx + c – m = 0
ax>2 + bx + (c – m) = 0
ax>2 + bx + c>1 = 0.
То есть мы, собственно, получили квадратное уравнение.
Ещё пример:
ax>2 + bx + c = mx + n
ax>2 + bx + c —mx – n = 0
ax>2 + bx – mx + c – n = 0
ax>2 + (b – m) x + (c – n) = 0
ax>2 + b>1 x + c>1 = 0.
Таким образом, уравнения двух приведённых выше видов
ax>2 + bx + c = m и ax>2 + bx + c = mx + n есть смысл назвать сводящимися к квадратным. То есть, если в правой части стоит многочлен с одной (той же, что и в левой части!) неизвестной степени не выше первой, то с помощью соответствующих преобразований квадратное уравнение мы получим без проблем.
Если же в правой части будет стоять многочлен с одной неизвестной второй степени, то квадратное уравнение может и не получиться.
Ситуация первая: ax>2 + bx + c =ay>2 + by + c.
Как бы ни старались, квадратного уравнения мы не получим. Неизвестных две, и это равенство не входит в множество математических объектов «квадратные уравнения». Вывод: неизвестная правой части должна быть такой же, что и в левой!
Ситуация вторая. Преобразуйте самостоятельно, например, два следующих уравнения:
ax>2 + bx + c = kx>2 + mx + n
ax>2 + bx + c = ax>2 + mx + n.
Получилось ли у вас квадратное уравнение в первом случае? А во втором? Как будет называться уравнение, которое сведётся не к квадратному?
Определите условие, при котором уравнение такого вида всё-таки будет сводиться к квадратному4.
Как ещё один пример рассмотрите уравнение
x>2 – 9 = (x – 5) (x +7).
Таким образом, наличие второй степени неизвестной в записи уравнения не всегда будет означать, что оно квадратное.
Очевидно, что если в правой части стоит многочлен с одной переменной степени выше второй, то квадратного уравнения мы ни при каких условиях не получим.
Итак, есть квадратные уравнения, а есть уравнения, сводящиеся к квадратным.