2-103. На рисунке изображен четырёхугольник из 6 спичек, площадь которого вдвое больше площади квадрата со стороной, равной одной спичке. Задача состоит в том, чтобы изменить форму четырёхугольника, не изменяя его периметра, так, чтобы площадь уменьшилась:
а) вдвое; б) вчетверо.
2-104. Из 6 спичек сложены прямоугольник и равносторонний треугольник. Периметры этих фигур одинаковы, а у какой больше площадь?
2-105. Из 6 спичек можно составить различные фигуры. Некоторые из них изображены на предыдущем рисунке. Спрашивается, у какой фигуры, составленной из 6 спичек, самая большая площадь?
2-106. Из 8 спичек можно составить ещё больше различных замкнутых фигур. Некоторые из них представлены на рисунке. Площади фигур различны. Сложите из 8 спичек фигуру с наибольшей площадью.
2-107. С помощью 4 спичек можно построить квадрат площадью 1 у. кв. ед. Сколько спичек потребуется, чтобы построить фигуру, имеющую площадь не менее 10 у. кв. ед.?
2-108. Дано 12 спичек. Требуется сложить фигуру, имеющую площадь 3 у. кв. ед. (Исключим простейший случай, показанный на рисунке к задаче 2-37).
2-109. Из 12 спичек можно сложить фигуру площадью 9 у. кв. ед. Переложив 8 спичек, уменьшите площадь на 4 у. кв. ед.
2-110. Постройте из 12 спичек фигуру площадью ровно 4 у. кв. ед.
2-111. Из 20 спичек составлены два прямоугольника: один из 14 спичек, а другой – из 6. Ясно, что площадь второго прямоугольника в 3 раза меньше площади первого. Сломайте данные фигуры и составьте новые, снова из 14 и из 6 спичек, причём с тем же отношением площадей.
2-112. Площадь прямоугольника из 14 спичек в 3 раза больше площади прямоугольника, составленного из 6 спичек. Теперь возьмите 1 спичку в большей группе, переложите её в меньшую и с помощью 7 и 13 спичек ограничьте снова две фигуры, из которых площадь одной была бы ровно в 3 раза больше площади другой.
2-113.
Соотношение площадей фигур 1:3. Теперь возьмите 1 спичку в большей группе, переложите её в меньшую, и постройте новые фигуры с тем же соотношением площадей. Только сделайте это так, чтобы 12 спичек из первоначального расположения остались на своих местах.
2-114. Примем за среднюю длину спички 5 сантиметров. Сколько потребуется спичек, чтобы выложить равными квадратами со стороной в одну спичку один квадратный метр?