Нейросетевое программирование. Инструментарий нейрокомпьютинга - страница 3

Шрифт
Интервал


Направление «инженерия знаний» объединяет задачи получения знаний из простой информации, их систематизации и использования. Это направление исторически связано с созданием экспертных систем – программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных – одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе – на основе нейросетевой технологии, использующие процедуры вербализации нейронных сетей.

К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символов, рукописного текста, речи, анализ текстов.

Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание или кластеризация объектов.

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и в ней поставлены проблемы написания компьютером музыки, литературных произведений (например, стихов или вариаций на темы сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач, предложенная в 1946 году российским изобретателем Г. С. Альтшуллером, положила начало таким исследованиям [16].

В процессе работы над искусственным интеллектом (ИИ) появились новые виды информации, алгоритмы работы с ними, новые методы получения и обработки данных.

Информация может быть представлена в виде данных, знаний, правил и акономерностей, способов получения (добычи), способов хранения и использования. Обращено внимание на смысл, содержащийся в информации, на его поиск, хранение, получение, измерение, преобразование. Понимание смысла связано с выполнением умозаключений, с использованием интеллектуальных навыков, например, таких, как умение делать традуктивные, индуктивные, дедуктивные выводы.

По мере развития ИИ появились новые виды интеллектуальных изделий, в основном – это службы техподдержки различных компаний, экспертные системы по подбору товаров (подарков), по оказанию интеллектуальных услуг клиентам, автоматизированные онлайн-помощники, которые иногда реализованы как чат-боты на веб-страницах, в виде различных интеллектуальных изделий.