* внедрены системы управления бизнес процессами на основе обучения с подкреплением (игрового принципа обучения);
* многие страны создали стратегии развития AI на государственном уровне, так в России принята стратегия указом №490 "О развитии искусственного интеллекта в Российской Федерации";
* на законодательном уровне формируется экосистема для AI: в России принят закон посвящённых AI (Закон об искусственном интеллекте 123-ФЗ).
* обучение на малых датасетах: копирование голоса по записи длительностью в 4 часа как SaaS продукт.
* виртуальная ведущая Елена от Сбербанка эмулирует мимику во время разговора, но не очень естественно, на мой взгляд.
Но не стоит забывать про стандартные задачи:
* Intelligent document processing – извлечение структурированных данных из неструктурированных бумажных документов;
* Process Mining – описание реальных процессов по цифровым следам, определение узких мест и зацикливаний и возможных решений.
Достижения это хорошо, но это демонстрация потенциальных возможностей. Давайте посмотрим, что добились нейронные сети в индустрии на основании отчёт об искусственном интеллекте Artificial Intelligence Index Report 2021.
Посмотрим на качественный прогресс в IMAGENET Calange. Это соревнование по распознаванию картинок нейронными сетями. Создана очень большая база изображений (датасет). В этот датасет входят разные изображения по 200 категориям. В категории TOP-1 accuracy нейронная сеть должна с одной попытки угадать категорию, например, это самолёт или туфли. В категории TOP-5 accuracy нейронная сеть должна с пятью попыток угадать категорию. Как мы увидим, прогресс постепенно выходит на плато:
год – TOP-1 – TOP-5 2013 – 65% – 85% 2014 – 74% – 87% 2015 – 79% – 92% 2016 – 83% – 95% 2017 – 84% – 97% 2018 – 85% – 97.5% 2019 – 86% – 97.6% 2020 – 86% – 97.7% 2021 – 86.5% – 97.9%
Давайте посмотрим другие показатели. Так до 2017 года дополнительные данные не давали преимущества, а лишь ухудшали результат. В 2017 году результаты сравнялись, а после с дополнительными данными результаты линейно обгоняют простого обучения на датасете. Сейчас TOP-1 = 90.2%, TOP-5 = 98.8. Возможно, именно в них и будет прогресс.
Также скорость обучения выросла: 2018 – 6.2…10 минуты, 2019 – 1.3…9 минуты, 2020 – 47 секунд до 1 минуты. Время всё же снижается кратно, хоть и по убывающей, а ресурсы увеличиваются экспоненциально, но и сложность нейронных сетей возрастает, чтобы показывать результаты более высокие. Но, хоть и ресурсов требуется гораздо больше, но в реальности нас интересует стоимость, а она постоянно снижается: 2018 – 500$, 2019 – 10$, 2020 – 8$, хоть и затухающе.