УМК «Нейросетевые технологии». Руководство по подготовке квалифицированных нейроконструкторов - страница 2

Шрифт
Интервал


Структура УМК

Накопленный опыт показал, что Учебно-методический комплекс (УМК) «Нейросетевые технологии» должен состоять из четырёх частей:

– Основы теории искусственных нейронных сетей

– Нейросетевые исследования хозяйственных процессов (решение задач кластеризации, классификации, прогнозирования, узнавания, предсказания).

– Конструирование искусственных нейронов и нейронных ансамблей для работы со смысловой частью информации

– Нейросетевое программирование (от искусственных нейронных сетей до моделирования высшей нервной деятельности человека).

Первые две части соответствуют уровню подготовки бакалавра.

В первой части учащихся знакомят с устройством нейронных сетей и их возможностями. На практических занятиях изучается устройство и работа с нейропакетом MemBrain.

Вторая часть даёт возможность познакомиться с различными нейропакетами и научиться решать практически возникающие задачи узнавания, классификации, прогнозирования, предсказания, сжатия, кластеризации объектов (образов). Для решения таких задач необходимы в основном простые нейросети типа перцептронов, сетей Кохонена, сетей Хопфилда, и др., которые можно отнести к нейроконструкциям первого уровня сложности.

Третья часть направлена на разработку и использование нейрокомпьютеров (проектирование и конструирование нейроконструкций (НК) на основе использования нейрологических элементов; разработка программного обеспечения (ПО) НК; обучение НК решению различных классов задач).

Нейросетевые конструкции становятся более сложными, в них используется интерфейс пользователя, автоматизируется управление проведением нейросетевых исследований, нейрокомпьютерные элементы реализуются в виде искусственных нейронных ансамблей (ИНА).

Самое главное, что нейроконструкции этого уровня создаются для работы со смысловой частью информации:

– сопоставление сложных объектов и оценку их сходства;

– выделение типового объекта из группы однородных;

– поиск типичных черт, существенных признаков;

– формирование описания типового объекта, выделение его отличительных черт;

– определение понятий (дефиниции);

– выявление причинно-следственных связей;

– интерпретация связей и свойств исследуемых объектов;

– генерация гипотез;

– выявление закономерностей;

– самообучение, адаптация.

Если необходимых нейросетевых алгоритмов в момент исследования неизвестно, в таких нейроконструкциях допускается использование известных алгоритмов из математической статистики, например, для выявления причинно-следственных связей, формирования существенных признаков, генерации гипотез, а так же – таких конструкций, как систем управления базами знаний (СУБЗ). В них можно использовать не выполненные в виде нейронных сетей логические элементы, а обычные цифровые программы.