Силы притяжения, действующие на тело внутри диска - страница 2

Шрифт
Интервал


.



Рис.1.1. Сила притяжения между дифференциалом dM массы диска и пробным телом m внутри диска


Элементарная сила притяжения dF, создаваемая дифференциальным элементом любого обруча равна



Дифференциал массы обруча определяем через дифференциал площади ds, который равен



Расстояние r между массой m и дифференциальным элементом



Подставляем (1.1) и (1.2) в уравнение силы



Эта сила имеет две ортогональные составляющие – вдоль оси X и перпендикулярно ей. Перпендикулярные силы, в конечном счете, компенсируют друг друга вследствие симметрии. Нас же интересует только сила, направленная вдоль горизонтальной оси, формирующие общую силу притяжения m в сторону центра диска. Эта составляющая определяется из подобных треугольников



Подставляем величину силы



Преобразуем



Интегрированием по всему радиусу диска находим полную силу



Это и есть полное значение силы, действующей на m, которое находится в средней части диска. Отметим, что ослабляющая сила тем сильнее, чем ближе m к центру диска. Здесь следует отметить следующее. Рассмотрим сумму в скобках в числителе



При вычислениях интеграла величина x для некоторого положения тела Rx изменяется в интервале от 0 до R>0 – на полном интервале радиуса диска. Этот интервал x следует формально разделить на два участка. На первом участке всегда x ≤ Rx, на втором – всегда x > Rx. Это приводит к тому, что в первом случае величина (1.4) и соответствующий ей интеграл в (1.3) оказывается положительной величиной всегда, а во втором, при некоторых углах φ, величина (1.4) и соответствующий ей интеграл в (1.3) становятся отрицательными. На знак интеграла знаменатель влияния не оказывает, поскольку сумма квадратов величин всегда больше их удвоенного произведения. Действительно, максимальное значение отрицательного слагаемого, способного сделать эту сумму отрицательной, определяется значением косинуса. Максимум отрицательной величины очевиден – это единичное значение косинуса:



В этом случае получаем уравнение



То есть, мы получили величину, которая никогда не принимает отрицательных значений, следовательно, и (1.5) также всегда положительна. Это означает, что при значениях параметра x, для некоторых обручей диска, являющихся для m внешними, сила притяжения при определённых углах φ имеет отрицательные значения, то есть, уменьшает силу притяжения тела в сторону центра диска. Запишем окончательное уравнение для результирующей силы, действующей на пробное тело m