в формуле могло быть как меньше нуля, так и больше нуля. В противном случае определение производной будет противоречиво (если пределы слева и справа – различны, то производная в данной точке не существует). А что говорят реальные опыты (эксперименты)? В реальных опытах
Δt никогда не бывает меньше нуля. Время – специфическая физическая величина, её измерение связано с подсчетом числа произошедших событий (периодов часов). Ситуация когда
не имеет места, ни в каких опытах, и поэтому
не существует в природе, но существует в математическом анализе.
Таким образом, когда физик смотрит, например, на уравнение
,
то он отчетливо должен понимать, что в эту одну формулу математический аппарат совершенно безупречно вложил два решения:
1-ое, когда
и оно (и только оно) реализуется в опытах.
2-ое, когда
и оно никогда не реализуется в опытах.
Аналогичная ситуация возникает, когда мы говорим о числе произошедших событий N и их приращении ΔN. В реальности ни dt, ни dN никогда не бывают математическими дифференциалами (назовем их «полудифференциалами»). Но математик-то обязан их объявить дифференциалами потому, что этого требует непротиворечивость математического аппарата.
Таким образом, если некто смотрит на формулу
и забывает о сказанном выше, у него возникают мысли о возможности создания машины времени
Именно математический аппарат провоцирует человека (очарованного этим аппаратом) на создание машины времени. И наоборот, никакие реальные опыты не дают нам оснований говорить об обратном течении времени. В вопросе о машине времени математический аппарат сыграл «злую шутку» с естествоиспытателем. Ниже мы увидим, что такие «шутки» математический аппарат проделывает постоянно.
Пример 4. Четырехмерное пространство-время. Теория относительности имеет математически компактное изложение при введении четырехмерного пространства-времени. И это изложение будет математически безупречно. Но какое отношение все это имеет к реальному пространству? Никакого. Реальное пространство – трехмерно, а не четырехмерно, и это – экспериментальный факт. В реальном пространстве нет места для четвертой оси Эйнштейна ict (размерность которой есть длина, такая же, как и остальных осей). Геометр материалист скажет: «Господа, вы утверждаете, что существует четырехмерное пространство-время. Тогда извольте построить, упомянутые вами четыре оси в реальном пространстве. Правила построения обоснуйте и сообщите эти правила нам». Ясно, что из этого ничего не выйдет. Но почему мы забываем об этом экспериментальном факте, и всякий раз возвращаемся к воображаемому четырехмерному пространству-времени? Потому, что здесь мы как раз и забываем о том, что математический аппарат одинаково безупречно описывает как то, что происходит, так и то, что не происходит. А в теории относительности математический аппарат как раз и описывает то, что не происходит. Ни одна точка реального пространства не принадлежит воображаемому четырехмерному пространству-времени. Это различные непересекающиеся множества.