Важным свойством генетического алгоритма является его способность создавать надежную, «дикую» конфигурацию параметров (например, чередование горячих и холодных конечных точек), что соответствует заданной скорости обучения (скорость обучения, умноженная на количество поколений). Это свойство позволяет пользователю анализировать и решать, является ли конфигурация равновесия нестабильной.
Обратной стороной генетических алгоритмов является их зависимость от распределенного управления памятью. Хотя обширные методы оптимизации могут использоваться для обработки больших наборов входных данных и работы с несколькими конфигурациями процессоров / ядер, сложность этой операции может сделать решения на основе генетических алгоритмов уязвимыми для ограничений ресурсов, которые препятствуют прогрессу. Даже при наличии кода генетического алгоритма теоретически программы на основе генетических алгоритмов могут находить решения проблем только при запуске на соответствующей компьютерной архитектуре. Примеры проблем, связанных с генетическим алгоритмом, работающим на более ограниченной архитектуре, включают ограничения размера памяти для хранения представлений генетического алгоритма, ограничения памяти, налагаемые базовой операционной системой или набором инструкций, и ограничения памяти, налагаемые программистом, такие как ограничения на объем вычислительной мощности, выделяемой для генетического алгоритма и / или требований к памяти.
Было разработано множество алгоритмов оптимизации, которые позволяют генетическим алгоритмам эффективно работать на ограниченном оборудовании или на обычном компьютере, но реализации генетических алгоритмов на основе этих алгоритмов были ограничены из-за их высоких требований к специализированному оборудованию.
Гетерогенное оборудование способно предоставлять генетические алгоритмы со скоростью и гибкостью обычного компьютера, используя при этом меньше энергии и компьютерного времени. Большинство реализаций генетических алгоритмов основаны на подходе генетической архитектуры.
Генетические алгоритмы можно рассматривать как пример дискретной оптимизации и теории вычислительной сложности. Они дают краткое объяснение эволюционных алгоритмов. В отличие от алгоритмов поиска, генетические алгоритмы позволяют контролировать изменение параметров, влияющих на производительность решения. Для этого генетический алгоритм может изучить набор алгоритмов поиска оптимального решения. Когда алгоритм сходится к оптимальному решению, он может выбрать алгоритм, который работает быстрее или точнее.