The transmembrane precursor protein of beta amyloid could play the role of anchor fasteners only if its intracellular part was associated with the polymeric proteins of the cytoskeleton. A candidate for such a polymeric microtubule-forming protein is tubulin. Simultaneously with the appearance of extracellular deposits of amyloid beta during degeneration of neurons and their processes, intracellular deposition of aggregates of tau protein associated with microtubules is recorded. The simultaneous appearance of intracellular and extracellular protein aggregates during neuronal degeneration may be the result of the degradation of a single system that fixes extended nerve processes as they pass through tissues.
4. Selective and reversible inhibition of the metabolism of a number of body cells under hypoxic conditions – mechanisms of oxygen saving (AMP-dependent protein kinase; ATP-dependent potassium channels; reversible inhibition of mitochondrial respiration by * NO radical, with the formation of nitrosylated hemes of cytochromes of the respiratory chain, not conducted by apoptosis). More on this in the second part of the review.
5. Cell poisoning due to a decrease in the activity of energy-dependent reactions for their detoxification and detoxification of the body as a whole: – a decrease in the activity of cytochrome P450 (NADPH-dependent), which carries out oxidative hydroxylation of xenobiotics – a reaction that stands at the beginning of numerous pathways of cell detoxification; – a decrease in the activity of the cell membrane glycoprotein Gp170 – ATP hydrolase, which energy-dependently removes organic pathogens of small molecular weight from the cell; – a decrease in the detoxification function of mitochondria, due to their death, due to the concentration in the mitochondria of a number of organs (liver), toxic metabolites and xenobiotics due to the energy of the difference in the electrochemical potential of the hydrogen ion on the inner mitochondrial membrane, followed by the fusion of mitochondria with lysosomes in the process of autophagy. Mitochondria, which occupy up to 30 % of the cell volume, are the most powerful detoxification systems that cleanse the cytoplasm from a large list of pathogenic factors of chemical and biological nature, thereby preventing chemical modification of various cytoplasmic enzymes by xenobiotics, thereby reducing the likelihood of metabolic chaos.