Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА - страница 7

Шрифт
Интервал


Рассмотрим такое топологическое свойство, как размерность. Точка как математический объект не имеет измерения. Движение точки порождает линию. Она имеет одно измерение – длину и представляет пример одномерного пространства. Перпендикулярное движение точки относительно линии порождает двухмерное пространство или плоскость. Продолжим алгоритм и получим трёхмерное, а затем четырёхмерное и N-мерные пространства. Представить себе многомерную метрику нельзя, возможности нашего мозга ограничены, но вычислить её можно, используя для этого многоиндексные массивы или матрицы, где количество столбцов и будет определять мерность пространства. Необходимо использовать компьютеры и выполнить проекции, перебрав многомерное многообразие в двухмерных или трёхмерных проекциях. В настоящее время аппарат многомерной метрики широко используется в различных областях науки.

Важной характеристикой размерности пространства является чётность или нечётность. Например, в четырёхмерном пространстве любые две точки будут разделены чем-либо трёхмерным, в двухмерном – одномерном. В подобном пространстве возможно существование таких пар точек, для которых сфера или плоскость, заключающая одну из них, не сможет отделить эти объекты друг от друга. Препятствие в этом случае всегда можно обойти и достичь одной и другой точки, не проникая в сферу. Жук сможет выползти из закрытого ящика стола, желток можно отделить от белка, не разбивая яйцо. Тюрьма в таком пространстве невозможна. Заключённые всё равно убегут, так как препятствия всегда можно обойти.

Ориентированность – ещё одно важное качественное свойство пространства. Под ориентированностью понимается сохранение при движении в таком пространстве положений верх-низ и право-лево. Действительно, двигаясь в этом пространстве, и даже совершая кругосветное путешествие, придя в отправную точку или место нашего движения, мы не заметим никаких изменений – положения лево-право и верх-низ не изменились. Такое пространство называется ориентированным. Неориентированное пространство – это такое пространство, при движении в котором, возможно изменение состояний, приводящих к ситуации, когда левое станет правым, а пол поменяется местами с потолком. Как это возможно? Немецкий математик Мёбиус продемонстрировал топологический конструкт, получивший название в его честь, реализующий пример неориентированного пространства. Если взять вытянутую в прямоугольник бумажную ленту, перекрутить её на пол-оборота и склеить противоположные края, то мы получим так называемый лист Мёбиуса. С одной стороны, его геометрия в небольших масштабах не отличается от евклидовой, но с другой – если жук проползёт из исходной точки этого конструкта и вернётся назад, то он окажется на противоположной стороне листа, и низ станет верхом, а левое будет правым. Не пересекая края листа, можно кисточкой покрасить одной краской обе его поверхности. Это пример так называемой односторонней поверхности и неориентированного пространства.