Нематематика. Для начинающих продюсеров - страница 6

Шрифт
Интервал


Найдите объект или явление в сфере вашей деятельности, которое можно описать при помощи понятия нечеткого множества. Нарисуйте его и расскажите что у вас получилось. Найдите два пересекающихся между собой нечетких множества. Опишите элементы, которые попадают в пересечение. Как можно оценить, насколько хорошо описывает реальную ситуацию модель нечетких множеств?


ЧИСЛА

Глава 3. Числа

В этой главе обсуждаются числа и их различные виды. Некоторое внимание уделено понятиям точки и прямой, которые являются привычной геометрической интерпретацией для множества действительных чисел и часто используются для того, чтобы разобраться в самых разных ситуациях. Понятие счетности множества тесно связано с понятием мощности множества, которое применяется, чтобы сравнивать между собой различные множества, возможно даже бесконечные. Самое важное в этой главе для практических применений – это подход к измерению различных объектов и их свойств. Как будет видно, не всегда для этого нам нужны числа, иногда они могут оказаться совсем бесполезными.

3.1. Виды чисел

Числа представляют собой одно из основных понятий математики и используются для количественной характеристики объектов, их сравнения и нумерации. Натуральные числа появились при подсчете объектов. Целые числа возникли расширением понятия натурального числа путем добавления отрицательных чисел и нуля. Рациональные числа включают целые и дробные величины и могут быть выражены бесконечной периодической десятичной дробью. Рациональные числа являются решением каких-либо линейных уравнений. Иррациональные числа это действительные числа, которые не являются рациональными, то есть все остальные числа на числовой прямой. Иррациональные числа могут быть выражены бесконечной непериодической десятичной дробью. Действительные числа (или вещественные) это рациональные и иррациональные числа. Множество натуральных чисел является подмножеством целых чисел, которые, в свою очередь, являются подмножеством рациональных чисел, которые являются подмножеством действительных чисел. Среди иррациональных чисел встречаются такие, которые являются корнями алгебраических уравнений с рациональными коэффициентами. А те, которые не являются, называются трансцендентными числами. Кроме действительных чисел есть еще мнимые. Квадрат мнимой единицы равен минус единице, чего, казалось бы, быть не может. Действительные числа являются подмножеством комплексных чисел. Для комплексных чисел выполняются многие свойства обычных чисел, но не все. Например, невозможно сказать какое из двух комплексных чисел больше или меньше.