Keywords: partial differential equations, ordinary differential equations, mathematical modeling, analogy, regularities.
Приходя к изучению законов мира в физической науке чаще всего выделялись те или иные законы, первоначальными среди которых являются именно механические закономерности, созданные Ньютоном и разработанные в математическом плане с его же стороны, наряду с другими учёными, среди коих ярко выделяется фигура Лейбница. Для примера настоящего утверждения можно привести дифференциальные формы основных уравнений движения (1), которые в свою очередь сводятся до определённых значений в формулах ускорения (2), силы (3), работы (4), мощности (5) и прочих.
Настоящие моменты понимания могут чаще всего рассматриваться именно в дифференциальных формах значения, по той причине, что они могут быть численно определены благодаря вводу некоторых преобразований, а именно благодаря преобразованию (6) и взятию определённого интеграла с установлением определённых границ (7).
Подобные направленности развиты не только в механическом плане, но и в других разделах физики, ярким тому примером может случить электростатика, электродинамика, магнитостатика, магнето-динамика и прочие. Для доказательства этого достаточно лишь упомянуть, что само понятие силы тока является производным по времени заряда, а напряжение – производное по заряду работы.
Настоящее утверждение можно привести для большого числа самых различных пониманий, но важен тот факт, что подобный подход в отличие от классического математического регулирования, становиться единственным при необходимости описания гравитационных характеристик пространства в масштабах всего пространства. Примером подобного рода явлений, где использование производных и соответственно дифференциальных уравнений становится известная квантовая физика.
Однако, в масштабе явлений, где классический математический аппарат уже не может выполнять свои функции, важными являются не сколько обычные классические производные, сводимые к обыкновенным дифференциальным уравнениям, если, конечно, не учитывать простейшие случае, ярким примером для коих можно привести преодоление потенциальной ямы частицы или описание её движения, либо другие подобные тривиальные случаи, интересными являются в большей мере лишь уравнения в частных производных.