Представьте, например, что мы ещё не знаем, что такое «свет», а ведь первые микроорганизмы этого не знали! Или не знаем, что такое спин74 (который используется в спинтронике75), про который догадались только в 1924 году, меньше ста лет назад. Если мы мало знаем о структуре мира, то требуется огромное время интенсивных выходящих в мир для проведения экспериментов рассуждений, чтобы узнать о каких-то проблемах, а затем их решить. И ещё надо узнать о правилах рассуждений, которые ведут к рассуждениям без ошибок, логика у человечества тоже прошла долгий путь развития.
Если мы хотя бы частично что-то знаем о структуре мира (всегда частично, всегда мало, даже через десять тысяч лет это будет «частично» и «мало», развитие бесконечно!), это бы в десятки, тысячи, миллионы раз уменьшило количество вычислений/мышления интеллекта по выработке мастерства в решении связанного с этой особенностью структуры мира класса задач.
Скажем, какую-то проблему мы можем решить человеческим мозгом за десять тысяч лет интенсивных размышлений. Это побольше, чем время существования человеческой цивилизации. Но если мы сделаем какие-то удачные догадки/гипотезы/guesses/предположения о структуре задачи и её предметной области, и они снизят объем вычислений в десять тысяч раз, то проблема будет решена всего за год. И можно будет переходить к следующим, более сложным проблемам.
Ускорение в десять тысяч раз по сравнению с «вознёй» возможно? Бывает ли ускорение на порядки величины по сравнению с «обычной скоростью решения задач»? Да, бывает! Так, квантовые компьютеры уже в определённых классах алгоритмов несравнимо (на много порядков величины) быстрее классических компьютеров, и это квантовое превосходство/quantum supremacy76 быстро увеличивается. Или в 2021 году было предложено ускорение на несколько порядков скорости обучения игры в видеоигры для алгоритмов обучения с подкреплением, и были достигнуты скорости обучения примерно такие же, как у человека. Буквально десяток лет назад речь шла о проблеме, которая вообще не решалась, компьютер не мог обучаться игре в видеоигры! Потом мог обучаться, но требовались огромные вычислительные мощности, и дело было хуже, чем у человека примерно в десять тысяч раз, требовался суперкомпьютер. И вот задача решена предложением нового алгоритма, использующего догадки о структуре знаний при игре