Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных - страница 10

Шрифт
Интервал


Цели:

Интегрировать модели в рабочую среду для их использования в решении реальных задач

Задачи:

Разработать и протестировать API или другой интерфейс для взаимодействия с моделями

Организовать инфраструктуру для развертывания и поддержки моделей

Документы:

Отчет о внедрении моделей в продакшн, описывающий процесс интеграции, используемые технологии и результаты тестирования интеграции

Мониторинг и обновление моделей:

На этом этапе команда следит за производительностью модели в продакшне, анализирует возникающие проблемы и периодически обновляет модели для адаптации к изменяющимся условиям и требованиям.

Цели:

Обеспечить стабильную работу моделей и их адаптацию к изменяющимся условиям

Задачи:

Мониторить производительность моделей и анализировать возникающие проблемы

Периодически обновлять модели для адаптации к новым данным и требованиям

Документы:

Отчет о мониторинге и обновлении моделей, содержащий результаты анализа производительности и информацию об обновлениях

Документация и обучение пользователей:

Команда разрабатывает документацию, описывающую модели, их функционирование и принципы работы. Это важно для обеспечения прозрачности, понимания и доверия со стороны пользователей и других заинтересованных сторон. Также проводится обучение пользователей, которые будут взаимодействовать с моделями и использовать их результаты в своей работе.

Цели:

Обеспечить понимание и доверие к моделям со стороны пользователей

Задачи:

Разработать документацию, описывающую модели и их принципы работы

Провести обучение пользователей, которые будут взаимодействовать с моделями

Документы:

Документация моделей, включающая технические детали, алгоритмы и примеры использования

Материалы для обучения пользователей, такие как презентации, руководства и видеоуроки

Этические аспекты и соответствие законодательству:

Команда учитывает этические аспекты и требования законодательства в разработке и внедрении моделей машинного обучения, например, в области защиты персональных данных и недискриминации. Это важно для предотвращения негативных последствий использования моделей и укрепления доверия со стороны общества.

Цели:

Учитывать этические аспекты и требования законодательства при разработке и внедрении моделей машинного обучения

Задачи:

Провести анализ этических и правовых аспектов применения моделей