Цели:
Собрать данные, необходимые для обучения и валидации моделей
Подготовить данные к анализу и использованию в моделях машинного обучения
Задачи:
Очистить данные от ошибок и пропущенных значений
Обработать категориальные и числовые признаки
Документы:
Отчет о сборе и подготовке данных, описывающий процесс и результаты работы с данными
Разработка и обучение моделей:
На этом этапе команда разрабатывает и обучает модели машинного обучения, используя выбранные алгоритмы и подходы. Затем проводится оценка качества моделей, сравнение их результатов и выбор наилучшей модели.
Цели:
Разработать и обучить модели машинного обучения
Оценить качество моделей и выбрать наилучшую
Задачи:
Выбрать подходящие алгоритмы машинного обучения
Обучить модели и провести первичную оценку их качества
Документы:
Отчет о разработке и обучении моделей, содержащий описание используемых алгоритмов, параметров моделей и результатов оценки качества
Тюнинг гиперпараметров и оптимизация моделей:
Для повышения производительности модели проводят тюнинг гиперпараметров, используя различные методы поиска и оптимизации. Этот процесс включает настройку параметров модели для достижения лучших результатов.
Цели:
Повысить производительность моделей путем оптимизации их гиперпараметров
Задачи:
Применить различные методы поиска и оптимизации гиперпараметров
Сравнить результаты и выбрать оптимальные значения гиперпараметров
Документы:
Отчет о тюнинге гиперпараметров и оптимизации моделей, включающий результаты экспериментов и выбранные оптимальные значения гиперпараметров
Валидация и тестирование моделей:
На этом этапе команда проверяет модели на новых данных, чтобы оценить их обобщающую способность и производительность в реальных условиях.
Цели:
Проверить модели на новых данных для оценки их обобщающей способности и производительности в реальных условиях
Задачи:
Разделить данные на обучающую, валидационную и тестовую выборки
Провести тестирование моделей на тестовых данных и оценить их производительность
Документы:
Отчет о валидации и тестировании моделей, содержащий результаты тестирования и выводы о производительности моделей
Внедрение моделей в продакшн:
После успешного тестирования и валидации модели интегрируются в рабочую среду, где они будут использоваться для прогнозирования и автоматизации решений.