Оценка качества моделей машинного обучения: выбор, интерпретация и применение метрик - страница 3

Шрифт
Интервал


AUROC (площадь под кривой операционной характеристики получателя) – метрика качества модели для задач обнаружения аномалий и классификации, которая измеряет способность модели различать между классами и находить аномалии.

Mean Average Precision (mAP) – метрика качества модели для задач обнаружения объектов, которая измеряет среднюю точность распознавания объектов на изображениях.

Intersection over Union (IoU) – метрика качества модели для задач обнаружения объектов, которая измеряет степень перекрытия между прогнозируемыми и фактическими объектами на изображениях.

Overfitting (переобучение) – явление, когда модель слишком хорошо запоминает данные обучения и не может обобщать на новые данные.

Underfitting (недообучение) – явление, когда модель не может достичь достаточной точности на данных обучения и не может обобщать на новые данные.

Cross-validation (кросс-валидация) – метод оценки производительности модели путем разделения данных на несколько частей и обучения модели на одной части и тестирования на другой. Этот процесс повторяется несколько раз с разными разбиениями данных, чтобы усреднить оценку производительности модели.

Hyperparameters (гиперпараметры) – параметры модели машинного обучения, которые настраиваются перед обучением и влияют на ее производительность и способность обобщать на новые данные.

Bias (смещение) – ошибка модели, которая происходит из-за ее недостаточной сложности и невозможности захватить сложные зависимости в данных.

Variance (дисперсия) – ошибка модели, которая происходит из-за ее слишком большой сложности и способности переобучаться на данных обучения.

Regularization (регуляризация) – метод, используемый для уменьшения переобучения модели путем добавления штрафа за сложность модели.

Feature engineering (инженерия признаков) – процесс преобразования и выбора признаков для улучшения производительности модели и увеличения ее способности обобщать на новые данные.

Введение в метрики качества модели

Что такое метрики качества модели?

Метрики качества модели – это инструменты для оценки производительности модели машинного обучения. Они позволяют определить, насколько хорошо модель работает на конкретных данных и насколько она точна в решении задачи, для которой она была обучена.

В данной книге представлен далеко не полный список метрик, и существуют и другие метрики, которые могут быть использованы для оценки качества моделей. Выбор подходящей метрики зависит от типа задачи, особенностей данных и целей проекта. Метрики представленные в данной книге наиболее распространенные при анализе качества типовых моделей машинного обучения.