Шаг3 Визуализация и статистический данных
Для построения различных графиков, которые могут помочь визуализировать и провести статистический анализ данных, мы просим Чат предоставить нам соответствующий код.
Такой код позволит нам быстро и удобно построить необходимые графики и провести необходимый анализ данных.
Благодаря этому мы сможем получить более глубокое понимание нашего датасета и извлечь более полезные выводы из данных.
Пользователь:
Библиотека pandas уже установлена и наш файл titanic.csv уже загружен в переменную data.
Файл titanic.csv содержит следующие столбцы:
Survived: int64, Pclass: int64, Name: object, Sex: object, Age: float64, Siblings/Spouses Aboard: int64, Parents/Children Aboard: int64, Fare: float64
Выполни визуализацию данных построив гистограмму, box plot, bar plot, scatter plot и корреляционную матрицу.
Чат:
Если данные уже загружены в переменную data, вы можете использовать следующий код для визуализации данных с помощью гистограмм, box plot, bar plot, scatter plot и корреляционной матрицы:
Этот код создаст графики визуализации, включая гистограммы, box plot, bar plot, scatter plot и корреляционную матрицу для различных столбцов данных. Гистограммы и box plot используются для числовых переменных, в то время как bar plot используется для категориальных переменных. Scatter plot и корреляционная матрица позволяют наблюдать взаимосвязь между числовыми переменными.
Выполнение кода создаст графики, которые помогут вам лучше понять распределение данных, взаимосвязь между переменными и выявить возможные выбросы или аномалии в данных.
Результат:
Выполняем все рекомендации Чата и посмотрим смотрим что из этого получилось.
Пользователь:
Ты можешь анализировать графики?
как их загрузить тебе для анализа?
Чат:
К сожалению, как AI, я не могу напрямую анализировать изображения или графики, загруженные пользователем. Однако, если у вас есть вопросы о том, как интерпретировать графики или какие выводы можно сделать на основе графиков, я могу помочь вам с объяснениями и рекомендациями.
Вы можете задать вопросы, касающиеся графиков, и я постараюсь дать вам подробные ответы и объяснения.
Примеры вопросов могут быть следующими:
Как интерпретировать корреляционную матрицу?
Что такое выбросы на box plot, и что они могут означать для данных?