Фотонные интегральные схемы представляют собой специализированные оптико-электронные устройства, которые объединяют различные компоненты, такие как излучатели (в частности, лазерные), фотодетекторы, волноводы и схемы обработки на одном чипе.
Отличия между высокоинтегрированными фотонными интегральными схемами и полупроводниковой (кремниевой) технологией при создании оптических устройств, включая сенсорные системы человеко-машинного взаимодействия, следующие:
– Фотонные интегральные схемы обладают меньшим размером и более компактной конструкцией по сравнению с полупроводниковыми отоэлектронными устройствами. Это позволяет создавать малогабаритные и легкие оптические системы, что особенно важно, например для сенсорных систем, где требуется минимизировать размер и вес устройства и для телекоммуникационных решений где требуется высокая производительность и скорость передачи данных в том числе и при построении систем на кристалле.
– Скорость и пропускная способность: обсуждаемые системы обладают высокой скоростью передачи данных и большей пропускной способностью по сравнению с полупроводниковыми устройствами. Это позволяет создавать системы с потенциалом обрабатывать бОльшие объемы данных быстрее и эффективнее.
– Высокоинтегрированные фотонные интегральные схемы потребляют меньше энергии по сравнению с полупроводниковыми устройствами. Это позволяет увеличить эффективность энергопотребления и продлить время работы устройства.
Фотонные системы обладают высокой устойчивостью к помехам, таким как электромагнитные воздействия, по сравнению с полупроводниковыми устройствами.
Одним из ключевых аспектов развития интегральной фотоники является разработка и использование базовых элементов, обеспечивающих возможность интеграции различных функциональных компонентов на одном чипе. Мы рассмотрим современные технологии, находящиеся в фокусе данной книги, которые позволяют достичь высокой эффективности интегрированных фотонных устройств. Эти технологии включают в себя использование волноводов, микрорезонаторов, модулирующих элементов и фотодетекторов, основанных на различных материалах и структурах. Исследования в области базовых элементов интегральной фотоники открывают новые перспективы для создания компактных и энергоэффективных оптических систем, способных решать широкий спектр задач в сферах связи, информационных технологий и медицины.