All sciences. №7, 2023. International Scientific Journal - страница 4

Шрифт
Интервал


In this case, the particles are divided into 2 groups – heavy particles of the order of MeV / A. E. M. and electron antineutrino, so heavy particles are considered separately, where the proton energy is considered as the smallest for the heaviest particle, and after the proportional mass of the proton and electron is the distribution between the electron and electron antineutrino. So a proton will get 0.52524 MeV, an electron 13.427111 keV and the rest of the huge value of the order of 0.2465 MeV gets an electron neutrino, but then the standard 1.028676 MeV are added to them, and it turns out that in total for a proton and an electron without Coulomb energy 13.42711153 keV, and together 1 042.10311153 keV.

Then the cycle repeats, but now the total energy of the electron and proton will not be 134.271 eV, but 134.345 eV and this energy remains completely stable. If we return to neutrinos, then their energy will be artificially derived from the reaction associated with the collision of an antineutrino and a proton, with the release of a neutron and a positron, which immediately annihilates. Now we should turn to a more industrial and realistic scale, explaining the real benefits of having such a system.

The first question is to initially generate and find these neutrons, namely to generate them artificially, that is, to direct the flow of protons and electrons with the right energy opposite each other. But at the same time, do not forget that both beams must have a strong focus, because if the beams disperse, there will simply be no collisions. Now, with regard to the energy given, it is clear that it does not matter in principle, because it is easy to add to all other values, so for example, you can choose an energy of 100 keV for electrons and 50 keV for protons – immediately ionizing them from hydrogen.

It turns out that protons are targets, and electrons are projectiles, as a result, 150 keV is added and neutrons are obtained, but before that, the electron energy is slowed down by an additional electromagnetic field created outside the accelerator chamber and drooping inside the compartment, where the reaction takes place. Thus, this energy for the proton is also reduced to values of the order of 1 keV, with the help of magnetic traps, so that they collide, and to eliminate the error by which the electron will simply rotate around the proton due to this additional kinetic energy, because, for comparison, the energy of the electron in the first orbit is 13.6 eV.