For both cases, about 10 MW of energy was expended, and therefore the beam currents are 100 A for electrons and 200 A for protons. This accelerator is a cyclotron, which is pulsed, so its frequency has an order of 12.19—12.2 MHz, with a beam charge of 8.2 MCL for electrons and 16.4 for protons, respectively. That is, about 5,0225 * 10>17 neutrons are obtained in one act, and 6,125 * 10>26 neutrons per second, and if we take into account that the half-life of a neutron is 611 seconds, then this part will halve after this time, and in a second the same lump of neutrons will be generated from each act per second. the same electrons, protons and electron antineutrinos.
Now, returning to the antineutrino, when neutrons are already available, it is important to describe the following system. There is a secondary chamber around the neutron chamber, in which protons with low energies of the order of 10—20 eV will have to rotate, but with as huge currents as possible. It is desirable to bring the currents in this case up to 4—5 MA, or to make several channels of rotation in a magnetic field, with such currents, maximizing the density of the location of protons around the chamber itself. Further, this whole system is placed in a huge tank with cadmium chloride, with a total volume of about 1000—1500 liters. The electron antineutrino, according to the method of Cowens and Reines, as in the experiment of 1956, will fly out to collide with protons located as tightly as possible. In the very experiment of the discoverers of neutrinos, they encountered hydrogen atoms in water, where the distance between two hydrogen atoms of two molecules was about 0.15 nm and was only 3 acts per hour. Here the distance is almost the Coulomb barrier of a proton or 1.4 fm, which is 10>71 times more.
But here there is an action of one trick, in the last experiment about 200 liters of water or 6.69 * 10>27 protons were used, but at the same time they had a huge distance between each other, but if the neutron chamber itself has a diameter of about 10 meters, then the circumference on the axis of rotation of the protons will be 34.54 meters with a sphere area of 1519.76 m>2. And with a proton diameter of 10>—15 m and an area of 1.256 * 10>—29 m>2, you need 1.21* 10