Математически, оператор Адамара $H^ {n} $ может быть записан следующим образом:
$$H^ {n} = \frac {1} {\sqrt {2^ {n}}} \sum_ {\boldsymbol {y}} (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} |\boldsymbol {y} \rangle,$$
где:
– $\boldsymbol {y} $ – битовые строки длины $n$.
– $\boldsymbol {x} \cdot \boldsymbol {y} $ – скалярное произведение битовых строк $\boldsymbol {x} $ и $\boldsymbol {y} $.
– $|\boldsymbol {y} \rangle$ – состояние кубитов, соответствующее битовой строке $\boldsymbol {y} $.
Оператор Адамара выражается в виде суммы последовательностей битовых строк и может быть представлен следующим образом:
$$H^ {n} = \frac {1} {\sqrt {2^n}} \sum_ {\boldsymbol {y}} (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} |\boldsymbol {y} \rangle,$$
где каждая битовая строка $\boldsymbol {y} $ пробегает все возможные комбинации подходящего размера $n$. Значение $ (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} $ вносит фазовый фактор в каждый элемент суперпозиции.
Оператор Адамара $H^ {n} $ применяется к каждому кубиту в системе, преобразуя его в состояние с равными вероятностями $|0\rangle$ и $|1\rangle$. Это обеспечивает создание равновероятных суперпозиций в системе из $n$ кубитов.