El físico consideró una clase particular de agujeros de gusano, los llamados agujeros de gusano de Theo. Teóricamente estudió la dependencia de la forma de la sombra del cuello en la velocidad de su rotación alrededor de su eje. Luego, el autor comparó los hallazgos con el comportamiento del modelo de agujero negro giratorio más popular, conocido como el agujero negro de Kerr.
Según la publicación ScienceAlert, resultó que con una rotación lenta, la garganta del agujero de gusano no se puede distinguir de un agujero negro. Sin embargo, si el objeto gira más rápido, la forma de la sombra nos permite decir si el agujero negro está frente a nosotros o aún la garganta de un agujero de gusano. Es importante que tales velocidades no sean prohibitivamente altas y puedan observarse en la realidad.
"Los resultados obtenidos aquí muestran que los agujeros de gusano que se consideran en este trabajo y tienen una velocidad de rotación razonable alrededor de su eje, gracias a las observaciones de sus sombras, se pueden distinguir de los agujeros negros", escribe Sheikh en una anotación de su artículo.
La dificultad radica en el hecho de que, hasta la fecha, nunca se han observado sombras de los agujeros negros ni de las Gargantas de los agujeros de gusano. La razón es que requiere una resolución muy alta (la capacidad de distinguir detalles finos). Sin embargo, el sistema de radiotelescopios EHT, diseñado para "ver" directamente el horizonte de eventos del agujero negro, supuestamente tiene los parámetros necesarios y ya ha realizado las primeras observaciones.
Los científicos de la Universidad Johns Hopkins han propuesto la hipótesis de la existencia de un tipo especial de objetos cósmicos que son invisibles y curvan la luz como agujeros negros, pero no tienen el horizonte de eventos clásico. El descubrimiento se informa en un artículo publicado en la revista Physical Review D.
Los investigadores utilizaron la teoría de cuerdas para realizar una búsqueda teórica de objetos que podrían reproducir los mismos efectos gravitacionales que los agujeros negros. Descubrieron que los solitones topológicos corresponden a esta condición, que son un tipo inusual de deformación del espacio y el tiempo que involucra mediciones compactas adicionales.