Il fisico ha considerato una certa classe di wormhole, le cosiddette talpe di Theo. Ha teoricamente studiato la dipendenza della forma dell'ombra del collo dalla sua velocità di rotazione attorno al suo asse. L'autore ha quindi confrontato i risultati con il comportamento del modello più popolare di buco nero rotante, noto come buco nero di Kerr.
Come chiarisce la pubblicazione ScienceAlert, si è scoperto che con una lenta rotazione, il collo del wormhole non può essere distinto dal buco nero. Tuttavia, se l'oggetto gira più velocemente, la forma dell'ombra ci consente di dire se il buco nero è davanti a noi o dopo tutto il collo del wormhole. È importante che tali velocità non siano proibitivamente elevate e possano essere osservate nella realtà.
"I risultati ottenuti qui mostrano che i wormhole, che sono considerati in questo lavoro e hanno una ragionevole velocità di rotazione attorno al loro asse, attraverso le osservazioni, le loro ombre possono essere distinte dai buchi neri", scrive Sheikh nell'abstract del suo articolo.
La difficoltà è che ad oggi non sono state ancora osservate ombre né dai buchi neri né dalle bocche delle talpe. Il motivo è che richiede una risoluzione molto elevata (la capacità di distinguere i dettagli fini). Tuttavia, il sistema di radiotelescopi EHT, progettato per "distinguere" direttamente l'orizzonte degli eventi di un buco nero, presumibilmente ha i parametri giusti e ha già effettuato le prime osservazioni.
Gli scienziati della Johns Hopkins University hanno proposto un'ipotesi sull'esistenza di un tipo speciale di oggetti cosmici che sono invisibili e piegano la luce come buchi neri, ma non hanno il classico orizzonte degli eventi. La scoperta è riportata in un articolo pubblicato sulla rivista Physical Review D.
I ricercatori hanno approfittato della teoria delle stringhe per condurre una ricerca teorica di oggetti in grado di riprodurre gli stessi effetti gravitazionali dei buchi neri. Hanno scoperto che questa condizione corrisponde ai solitoni topologici, che sono un tipo insolito di deformazione dello spazio e del tempo che coinvolge dimensioni compatte aggiuntive.
Le simulazioni al computer hanno mostrato che i solitoni topologici, a differenza dei normali buchi neri, emettono deboli raggi di luce che altrimenti non sarebbero in grado di sfuggire alla gravità di un vero buco nero. I fotoni si muovono lungo numerose traiettorie curve, facendo apparire sfocata l'ombra di un falso buco nero. In un normale buco nero, tale ombra definisce i confini dell'orizzonte degli eventi, una regione da cui la luce non può sfuggire.