Подготовка набора данных для обучения и тестирования программного обеспечения на основе технологии искусственного интеллекта. Учебное пособие - страница 12

Шрифт
Интервал


С. Информации о наличии/отсутствии целевой патологической находки, содержащейся в метаданных (то есть в аннотации – сопроводительных файлах) и отсутствующей на изображении.

Классификация A, B, C для уровня 3 (обнаружение находки) предполагает вовлечение врачей-экспертов с целью поиска (наличие/отсутствие – С), локализации (В) и сегментации (А)13.

В случае локализации врачу необходимо обозначить координаты области интереса простой геометрической фигурой, в случае сегментации – обвести контур области интереса, т.е. создать пиксельную маску. Для уровня 2 (классификация находки) необходимо классифицировать находку, используя общепринятые шкалы (например, BI-RADS14, ASPECTS15). Для уровня 1 (подтвержденный диагноз) необходимы данные медицинской карты, позволяющие поставить диагноз.

Классификация отображает взаимосвязь:

– объемов и качества исходных данных;

– трудозатрат на подготовку;

– методик разметки и работы с первичными данными;

– диагностической ценности.

Стоит отметить, что данная классификация применима в случае поиска патологических находок. Для некоторых НД, например, при задаче сегментации анатомической структуры, подтверждение диагноза неприменимо, соответственно данную классификацию использовать нельзя.

Также разметку данных можно разделить на проспективную и ретроспективную, т.е. по времени их получения.

Проспективная разметка аналогично ретроспективной разметке представляет собой сбор элементов в соответствии с поставленной целью, при этом обязательным условием является проведение дополнительных манипуляций с элементами (например, постановка метки начала и окончания события, меток обнаружения признаков, обозначений патологий и т.п.). Этот вид разметки проводят с участием обученного медицинского персонала (зачастую квалифицированного врача в субспециализации размечаемого набора данных) путем ручного аннотирования содержания данных или их частей.

Ретроспективная разметка данных представляет собой сбор элементов в соответствии с метаданными, которые отбираются по поставленной цели. Такую разметку проводят путем минимальных трудозатрат: выгрузка данных происходит из медицинской информационной системы, которую может провести инженер (аналитик) без участия врача. При этом для каждого элемента (изображение, сигнальные данные и т.д.) набора данных устанавливают соответствие с медицинской информацией (диагноз, результаты лабораторного тестирования и т.п.).