4. Продукционные системы и системы, основанные на правилах – используют наборы продукционных правил («если-то») для моделирования поведения искусственных систем. Такие системы используют заданные цели и правила для контроля своего поведения и способны создавать планы или стратегии для достижения этих целей.
5. Эвристические алгоритмы – это способы решения задач, не полностью математически обоснованные, но обычно дающие достаточно эффективные решения в большинстве случаев. В общем смысле, эвристика – это подход, который может быть не совсем корректным с математической точки зрения, но при этом оказывается практически полезным.
6. Робототехника – это сфера ИИ, которая объединяет кинематику, механику, электронику и программное обеспечение для создания машин, способных выполнять задачи в физическом мире, сверх областей, уже упомянутых выше.
7. Машинное обучение (ML) – как основная дисциплина внутри области Искусственного Интеллекта (AI), получившая самое сильное развитие в начале 21 века, применяет статистические методы для самообучения систем на основе данных, позволяя системам совершенствовать выполнение задач без явного программирования человеком. Среди техник Машинного обучения можно найти вероятностные алгоритмы, деревья решений, эволюционные алгоритмы и нейронные сети, каждый из которых применяется в различных областях – от создания систем рекомендаций до диагностики.
Нейронные сети (Neural Networks) и Глубокое обучение (Deep Learning) в свою очередь стали основной областью уже внутри Машинного Обучения, постепенно заменяя и вытесняя другие подходы и методы. Благодаря высокой точности и эффективности Нейросетей, а также увеличению доступности больших данных и вычислительных ресурсов доступных для их обучения, они стали более повсеместно доступными и применимыми в различных областях человеческой деятельности.
В области Нейронных сетей тоже можно выделить несколько ключевых направлений, сфокусированных на разных классах задач, которые эти сети позволяют решать.
– Во-первых, это Автоматизация принятия решений для систем с большим количеством параметров. Сюда можно отнести различные системы рекомендаций, системы для сегментирования клиентов, прогнозную аналитику, автоматизацию процессов.
– Во-вторых, Компьютерное зрение (CV)