Искусственный интеллект в прикладных науках. Медицина - страница 24

Шрифт
Интервал


SIR-модель является полезным инструментом для анализа и прогнозирования эпидемических ситуаций, особенно в случаях, когда нет необходимости учитывать подверженные состояния или когда количество новых случаев заражения невелико. Эта модель может помочь оценить влияние различных факторов на динамику эпидемии и предсказать ее дальнейшее развитие, что позволяет принимать более информированные решения в области общественного здравоохранения.

Рассмотрим пример кода на Python для реализации SIR-модели:

```python

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

# Определение функции, представляющей систему дифференциальных уравнений SIR-модели

def sir_model(y, t, beta, gamma):

S, I, R = y

dSdt = -beta * S * I

dIdt = beta * S * I – gamma * I

dRdt = gamma * I

return [dSdt, dIdt, dRdt]

# Начальные условия: количество подвергшихся инфекции, инфицированных и выздоровевших

S0 = 0.99

I0 = 0.01

R0 = 0.0

# Временные параметры

t = np.linspace(0, 200, 1000) # Временной интервал: от 0 до 200 дней, 1000 точек

# Коэффициенты модели: скорость передачи болезни (beta) и скорость выздоровления (gamma)

beta = 0.3

gamma = 0.1

# Решение системы дифференциальных уравнений

solution = odeint(sir_model, [S0, I0, R0], t, args=(beta, gamma))

# Построение графика

plt.plot(t, solution[:, 0], label='Подверженные') # Подверженные

plt.plot(t, solution[:, 1], label='Инфицированные') # Инфицированные

plt.plot(t, solution[:, 2], label='Выздоровевшие') # Выздоровевшие

plt.xlabel('Время (дни)')

plt.ylabel('Доля населения')

plt.title('Модель SIR')

plt.legend()

plt.grid(True)

plt.show()

```


Этот код реализует SIR-модель для моделирования распространения инфекционного заболевания в популяции. Он использует библиотеки NumPy, SciPy и Matplotlib для выполнения численных вычислений, решения дифференциальных уравнений и визуализации результатов.

Комментарии в коде объясняют каждую часть программы: определение функции `sir_model` для системы дифференциальных уравнений SIR-модели, установка начальных условий и временных параметров, решение дифференциальных уравнений с помощью функции `odeint`, построение графика, показывающего изменение численности каждой группы (подверженные, инфицированные, выздоровевшие) с течением времени.

После выполнения кода, мы получаем графики, отображающие динамику эпидемии во времени. В результате мы увидим три кривые, представляющие количество подверженных инфекции (S), инфицированных (I) и выздоровевших (R) с течением времени.