Искусственный интеллект в обработке и анализе медицинских МРТ-снимков с использованием OpenCV - страница 5

Шрифт
Интервал



``` python

def extract_pixel_data(dicom_slices):

pixel_data = [slice.pixel_array for slice in dicom_slices] # Извлечение пиксельных данных

return pixel_data

```


4. Отображение МРТ снимков: После извлечения пиксельных данных вы можете использовать функции OpenCV для отображения снимков. Примените масштабирование и настройте цветовую карту в соответствии с вашими потребностями. Вот пример кода для отображения МРТ снимков с использованием OpenCV:


``` python

import cv2


def display_images(images):

for image in images:

cv2.imshow("MRI Image", image)

cv2.waitKey(0)

cv2.destroyAllWindows()

```


Это основные шаги для загрузки и отображения МРТ снимков в формате DICOM с помощью OpenCV. Вы можете настроить код в соответствии с вашими потребностями, например, добавить функции обработки изображений или изменить способ отображения.


2.2 Улучшение контрастности и яркости


Часто МРТ снимки могут иметь низкую контрастность или неравномерное распределение яркости, что затрудняет их анализ. В этом разделе мы рассмотрим различные техники улучшения контрастности и яркости изображений с использованием OpenCV. Мы изучим методы гистограммного выравнивания, адаптивного эквализации гистограммы и применение фильтров для улучшения качества изображений.


Для улучшения контрастности и яркости МРТ снимков с помощью OpenCV можно использовать следующие методы:


1. Гистограммное выравнивание (Histogram Equalization): Гистограммное выравнивание является методом, который распределяет интенсивности пикселей по всему диапазону яркости для получения лучшей видимости деталей. В OpenCV вы можете использовать функцию `cv2.equalizeHist()` для применения гистограммного выравнивания. Вот пример кода:


``` python

import cv2


def enhance_contrast_histogram(image):

image_equalized = cv2.equalizeHist(image)

return image_equalized

```


2. Адаптивная эквализация гистограммы (Adaptive Histogram Equalization): Адаптивная эквализация гистограммы позволяет улучшить контрастность и яркость изображений с учетом локальных особенностей. Вместо глобального преобразования гистограммы, она разделяет изображение на небольшие блоки и применяет гистограммное выравнивание к каждому блоку независимо. В OpenCV вы можете использовать функцию `cv2.createCLAHE()` для создания объекта адаптивной эквализации гистограммы, а затем применить его с помощью функции `apply()` к изображению. Вот пример кода: