Data Science. Практика - страница 2

Шрифт
Интервал


2. R: это язык программирования, специально разработанный для статистического анализа и визуализации данных. Он популярен среди академических и научных кругов и имеет много полезных библиотек для статистического моделирования, машинного обучения и визуализации.

3. SQL: это язык запросов баз данных, используемый для извлечения, фильтрации и манипулирования данными в реляционных базах данных. SQL является основным инструментом для работы с данными для многих компаний, и знание этого языка является необходимым навыком для дата-сайентистов.

4. Java: это универсальный язык программирования, который используется во многих областях, включая веб-разработку, мобильное программирование и обработку больших данных. Java часто используется для создания распределенных систем обработки данных и имеет большую библиотеку библиотек для обработки данных, таких как Apache Hadoop и Spark.

5. JavaScript: это язык всем известный, который широко используется для создания веб-приложений и интерфейсов пользователя. JavaScript также может использоваться для анализа данных и визуализации, и он имеет несколько библиотек, таких как D3.js и Three.js, которые широко используются для визуализации данных.


Знание нескольких языков программирования может быть полезным для дата-сайентистов, поскольку это позволяет им работать с разными типами данных и инструментами, используемыми в их компаниях мы же будем разбирать Python.


Для обработки данных и машинного обучения в Python существует множество полезных библиотек такие как:


1. Pandas: это библиотека для обработки и анализа данных в Python. Она предоставляет эффективные инструменты для работы с табличными данными и позволяет легко читать, манипулировать и писать данные в различных форматах, таких как CSV, Excel и SQL.


2. NumPy: это библиотека для работы с многомерными массивами и матрицами в Python. Она предоставляет эффективные инструменты для операций с векторными и матричными данными, такие как вычисление матриц, транспонирование и умножение.


3. Scikit-learn: это библиотека машинного обучения в Python, которая предоставляет множество алгоритмов и инструментов для классификации, регрессии, кластеризации и других задач машинного обучения. Она также предоставляет функции для оценки моделей и выбора гиперпараметров.