Читать Data Science. Практика - NemtyrevAI

Data Science. Практика

На данной странице вы можете читать онлайн книгу "Data Science. Практика" автора NemtyrevAI. Общий объем текста составляет эквивалент 50 бумажных страниц. Произведение многоплановое и затрагивает разнообразные темы, однако его жанры наиболее вероятно можно определить как тимбилдинг, производственно-практические издания. Книга была добавлена в библиотеку 17.05.2024, и с этой даты любой желающий может удобно читать ее без регистрации. Наша читалка адаптирована под разные размеры экранов, поэтому текст будет одинаково хорошо смотреться и на маленьком дисплее телефона, и на огромном телевизоре.

Краткое описание

В этой книге мы рассмотрим практические примеры обработки данных. Мы будем работать с различными типами данных, включая текст, изображения и звуки. Книга адресована как начинающим Data Science, так и опытным специалистам, которые хотят отдохнуть от постоянного подключения к сети и научиться работать с данными в офлайн-режиме.

Книга Data Science. Практика онлайн бесплатно




Введение:


В этой книге мы рассмотрим практические примеры обработки данных. Мы будем работать с различными типами данных, включая текст, изображения и звуки. Книга адресована как начинающим дата-сенсам, так и опытным специалистам, которые хотят отдохнуть от постоянного подключения к сети и научиться работать с данными в офлайн-режиме.


Data Scientist – это специалист по работе с данными для решения задач бизнеса. Он работает на стыке программирования, машинного обучения и математики. В основные обязанности дата-сайентиста входит сбор и анализ данных, построение моделей, их обучение и тестирование

Они специализируются на работе с данными для решения бизнес-задач и используют свои знания в области программирования, машинного обучения и математики для сбора, анализа и обработки данных. К основным обязанностям дата-сайентиста относятся:

Сбор данных: это включает в себя сбор данных из различных источников, таких как базы данных, APIs, веб-сканирование и другие.

Очистка данных: дата-сайентисты должны удалять неточные или поврежденные данные и приводить данные к единому формату.

Анализ данных: это включает в себя изучение данных с использованием статистических методов и визуализации данных для обнаружения тенденций и моделей.

Построение моделей: дата-сайентисты используют алгоритмы машинного обучения, чтобы создать модели, которые могут предсказывать результаты на основе данных.

Обучение и тестирование моделей: дата-сайентисты обучают модели на основе обучающих данных, а затем тестируют их на тестовых данных, чтобы убедиться в их точности и эффективности.

Общая коммуникация: дата-сайентисты должны быть способны эффективно коммуницировать свои результаты и рекомендации другим членам команды и руководству.


В целом, роль дата-сайентиста является ключевой для многих компаний, которые стремятся использовать данные для принятия более информированных решений и повышения эффективности бизнеса.


Для дата-сайентистов наиболее важными языками программирования являются:


1. Python: это один из самых популярных языков программирования для дата-сайентистов, поскольку он легко учиться и имеет богатую экосистему библиотек для обработки данных, машинного обучения и визуализации. Python широко используется в научных и инженерных областях, и многие компании используют его для обработки больших данных.


Читайте также
Марк и Лиля – молодая семья. Они вступили в ранний брак, но однажды Лиля почувствовала, как её чувства к Марку… начинают меняться. Она избегает Марка,...
Благодаря этой книге Вы узнаете, какие оптимальные условия должны быть у домашних растений, научитесь выращивать их – от семечка или уже существующих...
Рейчел Эллингтон, менеджер из Лондона, пережила болезненное расставание с бойфрендом и теперь избегает отношений, боясь обжечься вновь. Однако Зак Лоу...
Калли Умберто пережила череду провальных свиданий после внезапно закончившегося курортного романа и теперь зареклась встречаться с мужчинами. Но восем...
Книга состоит из семи глав. В первой главе мы кратко обсудим основные концепции компьютерного зрения и задачи обнаружения объектов. Во второй главе мы...
В этой уникальной книге читатель найдет всё необходимое для освоения обработки МРТ снимков с помощью OpenCV и искусственного интеллекта. От основ до п...