Решаем задачи Python - страница 17

Шрифт
Интервал


1. Создаем список длиной равной длине исходного массива чисел, заполненный единицами. Этот список будет содержать длины наибольших невозрастающих подпоследовательностей, заканчивающихся в каждом элементе исходного массива.

2. Проходим по каждому элементу исходного массива и сравниваем его со всеми предыдущими элементами.

3. Если разница между текущим элементом и предыдущим не превышает `k`, то длина наибольшей невозрастающей подпоследовательности, заканчивающейся в текущем элементе, будет равна максимальной длине подпоследовательности, заканчивающейся в предыдущем элементе, плюс 1.

4. В конце алгоритма находим максимальное значение в списке длин и восстанавливаем саму подпоследовательность.

Давайте реализуем этот алгоритм на Python:

```python

def find_max_non_increasing_subsequence_with_limit(nums, k):

n = len(nums)

# Создаем список для хранения длин наибольших невозрастающих подпоследовательностей

lengths = [1] * n

# Заполняем список длин

for i in range(1, n):

for j in range(i):

if nums[i] <= nums[j] and nums[j] – nums[i] <= k:

lengths[i] = max(lengths[i], lengths[j] + 1)

# Находим максимальную длину подпоследовательности

max_length = max(lengths)

# Восстанавливаем саму подпоследовательность

subsequence = []

last_index = lengths.index(max_length)

subsequence.append(nums[last_index])

for i in range(last_index – 1, -1, -1):

if nums[last_index] – nums[i] <= k and lengths[i] == max_length – 1:

subsequence.append(nums[i])

max_length -= 1

last_index = i

return subsequence[::-1] # Возвращаем подпоследовательность в обратном порядке

# Пример использования

nums = [5, 3, 8, 2, 9, 1, 6]

k = 3

result = find_max_non_increasing_subsequence_with_limit(nums, k)

print("Наибольшая невозрастающая подпоследовательность с разницей не более", k, ":", result)

```

Этот код найдет и выведет наибольшую невозрастающую подпоследовательность в списке чисел `[5, 3, 8, 2, 9, 1, 6]`, где разница между соседними элементами не превышает 3.

Работа с текстом и данными

Пояснения к коду:

1. Определение функции `find_max_non_increasing_subsequence_with_limit`:

– Эта функция принимает список чисел `nums` и число `k`, которое ограничивает разницу между соседними элементами подпоследовательности. Она возвращает наибольшую невозрастающую подпоследовательность с разницей между соседними элементами не более `k`.