Пример кода на Python:
```python
import random
def monte_carlo_circle_area(num_points):
points_inside_circle = 0
total_points = num_points
for _ in range(num_points):
x = random.uniform(-1, 1)
y = random.uniform(-1, 1)
distance = x**2 + y**2
if distance <= 1:
points_inside_circle += 1
circle_area_estimate = points_inside_circle / total_points * 4
return circle_area_estimate
# Пример использования
num_points = 1000000
estimated_area = monte_carlo_circle_area(num_points)
print(f"Приближенная площадь круга с использованием {num_points} точек: {estimated_area}")
```
В этом примере мы используем тот же метод Монте-Карло, чтобы оценить площадь круга. В результате мы получим приближенное значение площади круга, используя случайно сгенерированные точки внутри квадрата, описывающего этот круг.
Пояснения к каждой части кода:
1. `import random`: Эта строка импортирует модуль `random`, который мы будем использовать для генерации случайных чисел.
2. `def monte_carlo_circle_area(num_points)`: Это определение функции `monte_carlo_circle_area`, которая принимает один аргумент `num_points`, представляющий количество случайных точек, которые мы сгенерируем.
3. `points_inside_circle = 0`: Эта переменная будет использоваться для отслеживания количества точек, попавших внутрь круга.
4. `total_points = num_points`: Эта переменная хранит общее количество сгенерированных точек.
5. `for _ in range(num_points):`: Этот цикл генерирует `num_points` случайных точек внутри квадрата.
6. `x = random.uniform(-1, 1)` и `y = random.uniform(-1, 1)`: Эти строки генерируют случайные координаты `x` и `y` для каждой точки в диапазоне от -1 до 1, что соответствует координатам квадрата.
7. `distance = x**2 + y**2`: Это вычисляет квадрат расстояния от начала координат до сгенерированной точки.
8. `if distance <= 1:`: Этот оператор проверяет, попадает ли точка внутрь круга, используя тот факт, что расстояние от начала координат до точки меньше или равно квадрату радиуса круга (который равен 1).
9. `points_inside_circle += 1`: Если точка попадает внутрь круга, увеличиваем счетчик точек внутри круга.
10. `circle_area_estimate = points_inside_circle / total_points * 4`: Эта строка оценивает значение площади круга, умножая отношение точек внутри круга к общему числу точек на 4. Таким образом, мы получаем оценку площади круга, используя формулу для площади круга πr^2, где r = 1.