40 задач на Python - страница 14

Шрифт
Интервал


– Эта строка кода проверяет, что все числа от 1 до ( n^2 ) присутствуют в матрице и являются уникальными.

– Код: `if all_numbers != numbers_in_matrix: return False`

– Сравнение множеств `all_numbers` и `numbers_in_matrix`. Если они не равны, то матрица не может быть магическим квадратом, и функция возвращает `False`.

Шаг 3: Вычисление эталонной суммы

– Код: `magic_sum = sum(matrix[0])`

– `sum(matrix[0])` вычисляет сумму чисел в первой строке матрицы.

– Эта сумма принимается за эталонную, с которой будут сравниваться суммы остальных строк, столбцов и диагоналей.

Шаг 4: Проверка сумм строк

– Код: `for row in matrix: if sum(row) != magic_sum: return False`

– Цикл проходит по каждой строке `row` в матрице.

– `sum(row)` вычисляет сумму чисел в текущей строке.

– Если сумма строки не равна `magic_sum`, функция возвращает `False`.

Шаг 5: Проверка сумм столбцов

– Код: `for col in range(n): if sum(matrix[row][col] for row in range(n)) != magic_sum: return False`

– Внешний цикл проходит по каждому столбцу `col`.

– Внутренний генератор `matrix[row][col] for row in range(n)` собирает все элементы столбца.

– `sum(…)` вычисляет сумму элементов текущего столбца.

– Если сумма столбца не равна `magic_sum`, функция возвращает `False`.

Шаг 6: Проверка сумм диагоналей

– Главная диагональ:

– Код:`if sum(matrix[i][i] for i in range(n)) != magic_sum: return False`

– Генератор `matrix[i][i] for i in range(n)` собирает элементы главной диагонали (где индексы строки и столбца равны).

– `sum(…)` вычисляет сумму этих элементов.

– Если сумма главной диагонали не равна `magic_sum`, функция возвращает `False`.

– Побочная диагональ:

– Код: `if sum(matrix[i][n-i-1] for i in range(n)) != magic_sum: return False`

– Генератор `matrix[i][n-i-1] for i in range(n)` собирает элементы побочной диагонали (где сумма индексов строки и столбца равна \( n-1 \)).

– `sum(…)` вычисляет сумму этих элементов.

– Если сумма побочной диагонали не равна `magic_sum`, функция возвращает `False`.

Шаг 7: Вывод результата

– Код: `if is_magic_square(matrix): print("YES") else: print("NO")`

– Если функция `is_magic_square(matrix)` возвращает `True`, программа выводит "YES".

– В противном случае выводится "NO".

Итог

Код последовательно проверяет все необходимые условия для магического квадрата, от уникальности чисел до сумм строк, столбцов и диагоналей. Если все условия выполняются, матрица признается магическим квадратом.