Теория пределов и нейросети. Практикум - страница 3

Шрифт
Интервал


Теперь можем найти предел:\[\lim_{x \to 0} f(x) = \frac{1}{10}\]

Таким образом, предел функции равен:

\[\lim_{x \to 0} f(x) = \frac{1}{10}\].

Традиционноерешение

lim(x→0)f(x)= lim(x→0)(1- cos x)/5x^2) = lim (x→0)(2sin^2(x/2)/5x^2) = I применим тригонометрическую формулу половинного аргумента (1 – cosx) = 2sin^2(x/2)I = 2/5 lim(x→0) (sin^2(x/2)/4(x/2)^2) = 1/10 lim(x→0)(sin^2(x/2)/(x/2)^2) = 1/10 lim(x→0)((sin(x/2)/(x/2)) = I здесь функция представляет собой первый замечательный предел в квадратеI = (1/10)(1^2) = 1/10/

Ответ: 1/10.

6. Найти предел функции f(x) = (x^2 + 4 + 2x^4)/(x – 2 + 3x^4) при x стремящемся к бесконечности.


GPTutor


Чтобы найти предел функции ( f(x) = \frac{x^2 + 4 + 2x^4}{x – 2 + 3x^4} ) при ( x ) стремящемся к бесконечности (( x \to \infty )), мы можем использовать алгебраические методы пределов.

Для начала, определим степень числителя и знаменателя:

В числителе ( x^2 + 4 + 2x^4 ) наибольшая степень ( x^4 ).

В знаменателе ( x – 2 + 3x^4 ) также наибольшая степень ( x^4 ).

Теперь применим правило Лопиталя, так как степени числителя и знаменателя одинаковы и равны:

[ \lim_{{x \to \infty}} \frac{x^2 + 4 + 2x^4}{x – 2 + 3x^4} = \lim_{{x \to \infty}} \frac{8x^3 + 0 + 8x^3}{1 + 12x^3} ]

После дифференцирования числителя и знаменателя по ( x ):

[ \lim_{{x \to \infty}} \frac{8x^3 + 0 + 8x^3}{1 + 12x^3} = \lim_{{x \to \infty}} \frac{16x^3}{12x^3} = \frac{16}{12} = \frac{4}{3} ]

Таким образом, предел функции ( f(x) = \frac{x^2 + 4 + 2x^4}{x – 2 + 3x^4} ) при ( x ) стремящемся к бесконечности равен ( \boxed{\frac{4}{3}} ).Ответ:4/3.


7.Найти предел функции f(x) = 4x +2x^3 + 3 при x стремящемся к – 1.

GPTutor


Чтобы найти предел функции ( f(x) = 4x + 2x^3 + 3 ) при ( x ) стремящемся к ( -1 ), мы можем использовать алгебраические методы пределов. В данном случае, функция ( f(x) ) не содержит разрывов в окрестности ( x = -1 ), так что мы можем вычислить предел напрямую.

Вычислим предел:

[ \lim_{{x \to -1}} (4x + 2x^3 + 3) ]

Подставляем ( x = -1 ):

[ f(-1) = 4(-1) + 2(-1)^3 + 3 ]

[ f(-1) = -4 – 2 + 3 ]

[ f(-1) = -3 ]

Таким образом, предел функции ( f(x) = 4x + 2x^3 + 3 ) при ( x ) стремящемся к ( -1 ) равен ( \boxed{-3} ).

Ответ: – 3.


8. Найти предел функции f(x) = (x^2 – 3x +2)/(x^2 + 2x – 3) при x стремящемся к 1.

GPTutor


Чтобы найти предел функции ( f(x) = \frac{x^2 – 3x + 2}{x^2 + 2x – 3} ) при ( x ) стремящемся к ( 1 ), мы можем подставить ( x = 1 ) напрямую в выражение функции: