Как машины думают? Математические основы машинного обучения - страница 5

Шрифт
Интервал


Глава 1: От линейной алгебры к искусственному интеллекту

Мир современных технологий, основанных на машинном обучении и искусственном интеллекте (ИИ), кажется невероятно сложным. Нам кажется, что это магия, когда машины могут распознавать лица, переводить тексты или играть в сложные игры лучше человека. Но за этим стоит не магия, а строгие математические принципы, такие как линейная алгебра, которые формируют основу этих процессов. В этой главе мы рассмотрим, что такое линейная алгебра, ее ключевые понятия и как она лежит в основе современных вычислительных систем, включая нейронные сети и методы анализа данных.

Что такое линейная алгебра и как она лежит в основе вычислений

Линейная алгебра – это раздел математики, который занимается изучением векторов, матриц, и их свойств. Эта область играет центральную роль в вычислениях, поскольку многие сложные математические задачи можно упростить, представив их в виде линейных уравнений. Эти уравнения описывают отношения между различными объектами и позволяют находить решения через манипуляции с матрицами и векторами.

Вычисления с использованием линейной алгебры стали возможны благодаря изобретению компьютеров, которые могут быстро выполнять математические операции с большими наборами данных. Одним из главных применений линейной алгебры в вычислениях является обработка многомерных данных. Пример – изображение, которое можно представить в виде матрицы чисел, где каждое число соответствует яркости пикселя.

Линейная алгебра используется в таких ключевых задачах машинного обучения, как обучение нейронных сетей, решение систем уравнений, и оптимизация. Она помогает работать с большими объемами данных и извлекать полезные сведения из них.

Основные понятия: векторы, матрицы, преобразования

Чтобы понять, как линейная алгебра применяется в искусственном интеллекте, необходимо освоить основные понятия – векторы, матрицы и линейные преобразования.

Векторы

Вектор – это объект, который имеет длину (или величину) и направление. Векторы могут представлять различные объекты: точки в пространстве, силу, движение и даже слова или изображения. В машинном обучении векторами часто описываются объекты данных: например, каждая точка данных (будь то изображение, текст или аудиозапись) может быть представлена вектором, где каждое значение вектора представляет конкретную характеристику объекта.