Обрабатывать информацию побитно – неэффективно. Гораздо более эффективно обрабатывать информацию сразу целыми векторами из N бит. Вектор из 8 бит называется байтом и принципиальным отличием микропроцессоров сразу после их появления стала обработка информации не битами, а байтами. Такие микропроцессоры получили название 8 разрядных. Довольно быстро после 8 разрядных стали появляться 16 разрядные, затем 32 разрядные. В настоящее время наиболее распространенными в компьютерах являются 64 разрядные микропроцессоры.
В НИР «Проба» была поставлена задача создания и анализа узлов для криптосхем, работающих не с битами, а с байтами. Формально каждый байт является 8 битовым вектором и с ним можно работать так же, как и раньше работали с электронными шифраторами. Но будет ли такая работа наиболее эффективной? Можно ли найти для шифраторов, работающих с байтами, специфические методы построения более высокоскоростных и более стойких шифраторов, чем традиционные электронные?
Как я писал в КиС, большинство советских шифраторов того времени состояли из «балалаек». Так криптографы прозвали типовой узел тех шифраторов, состоящий из регистра сдвига над GF(2) и его функции обратной связи. А что будет, если ячейками регистра сдвига будут не биты, а байты? Или, опять переходя к математическому языку, регистр сдвига будет над Z/256 – кольцом вычетов по модулю 256. Появляются два интересных момента.
Сложение байт можно проводить как покоординатное сложение по модулю 2 без переноса, а можно как сложение в кольце Z/256 – с переносом;
К содержимому ячейки можно применять подстановку из симметрической группы S>256.
В НИР «Проба» сфокусировали внимание именно на этих двух особенностях перехода от бит к байтам. Как и во всякой серьезной НИР, начали с изучения простейших свойств, не пытаясь сразу объять необъятное. Первый отчет по НИР «Проба» вышел в 1977 году, с тех пор прошло уже свыше 40 лет.
Сейчас результаты НИР «Проба» позволяют понять, чем же интересовались в середине 70-х годов прошлого века советские криптографы, каковы были тогда основные направления развития криптографии, как специфического раздела математики. Я, естественно, не могу в точности помнить все эти результаты, полученные свыше 40 лет назад, но постараюсь здесь вкратце описать их общими словами.