Все науки. №11, 2023. Международный научный журнал - страница 3

Шрифт
Интервал


However, in practice, collision reactions on a stationary target of directed particles are most common, which led to a large number of results, however, there are cases when the result of such a collision became nuclei, in turn, disintegrating into component parts. Or, a similar result was observed in a collider collision, that is, when one beam became a target relative to the second and the second became a target relative to the first. This factor led to the fact that these reactions with particle bombardment were also subdivided into instantaneous and composite reactions in addition to the exa-energy and endo-energy types. The thing is that this is determined already from the energy of directed particles, and if it is comparatively large for a particular reaction, along with other constituent moments, from which the time of the reaction itself is determined, then it can pass instantly, forming reaction products, then directed particles literally knock out parts of the products of the nuclear reaction from the composite core [7—10].

For compound reactions, there is an algorithm by which the target merges for a certain time with a directed particle, after which it begins to disintegrate, starting a new formation without taking into account previous impulses. In this case, the decay reaction is included in the reaction of directed particles alone, from which it can be concluded that these two types of nuclear reactions are inextricably linked. But now it is worth moving on to a complete analysis of a definitely given reaction, with appropriate conditions, namely, the reaction (1) itself, its main channel, the masses of all the components of this reaction – M>a, M>A, M>B, M>b and the kinetic energy of the directed particle E>ka1 before the nuclear reaction and the nuclear barrier.



Initially, the purpose of such an analysis is to determine all the necessary aspects and properties of a given nuclear reaction. It should be taken into account that the reaction has not yet begun and it is necessary first to determine the Coulomb barrier (2) of the target particle to which the charge particle is directed.



It is worth saying that most often in formula (2) two constants are used to replace the elementary charge, this is a fine structure constant equal to 1/137 and the product of the reduced Planck constant multiplied by the speed of light measured in MeV equal to 197.3 MeV [10—12]. These units boil down to the fact that equality (3) is true and clearly a simplification of the entire expression.