Особая геометрия и распространение лучей внутри псевдогиперболоида может быть использована в качестве нового резонатора/формирователя мощного ЭМ излучения с сверхмалой угловой расходимостью в диапазоне часто от СВЧ до видимого
Рассмотрим ранее представленную поверхность второго порядка – псевдогиперболоид с точки зрения использования в качестве объёмного резонатора/формирователя мощного ЭМ излучения. Для этого необходимо предусмотреть выходную апертуру в месте сосредоточения ЭМ энергии.
Для этого изменим немного трактрису. Возьмём усечение одной ветви гиперболы со стороны выхода ниже оси фокусов, равном длина волны/2. Например, для СВЧ зазор 0.1-2 мм, ИК 5-50 мкм, видимый свет: 1 мкм.
Рис. № 7. Выходная апертура псевдогиперболоидного источника ЭМ излучения.
В этом случае будет происходить не только концентрация лучей к диаметральной оси фокусов гиперболы, но и узко направленное цилиндрическое распространение по оси фокусов в одном направлении потока с толщиной “стенки” излучения, равной длине волны.
Главная особенность такого резонатора – это формирование ЭМ излучение полой цилиндрической формы с толщиной стенки, равной длине волны и с угловой расходимостью, приближающейся к дифракционному пределу. Геометрическая синергия обеспечивается за счёт специфической формы отражающих поверхностей, описываемых в терминах усечённой гиперболической трактрисы. Такая форма позволяет лучам самосогласованно распространяться и фокусироваться по оси – в отличие от традиционных конфигураций.
Это универсальное физико-геометрическое свойство позволяет использовать резонатор в различных диапазонах частот. Выбор материалов и методов возбуждения зависит от частотного диапазона (СВЧ, ИК, оптический).
Вариант 3-D архитектуры гиперболоидного резонатора показан на следующем рисунке.
Рис. № 8. 3-D архитектура гиперболоидного резонатора.
Где:
– 1- Входной поток
– 2 – Резонатор
– 3- Выходная апертура (толщина стенки = длинна волны)
Замечание!
Рисунки № 8,9,10 показывают макроскопическую геометрию для наглядности. Толщина кольца апертуры = расстояние от оси фокусов до усечения гиперболы оптимально выбирается близким к λ для подавления паразитных мод, максимального согласования импедансов, обеспечения однородности фазового фронта.
Применение псевдогиперболоидной поверхности в газодинамической лазерной генерации имеет свои особенности. Для газодинамической лазерной генерации резонатор должен быть полно проходным для обеспечения газового потока. Здесь возможна реализация двух типов генерации мощного ЭМ излучения: