Высшая математика. Шпаргалка - страница 3

Шрифт
Интервал


>1(А>1х + В>1у + С>1) + m>2(А>2х + В>2у + С>2) = 0. Если прямые L>1 и L>2 пересекающиеся, то пучок центральный, если прямые параллельны, то и пучок параллельный.

6. Пусть даны точка М (х>1, у>1) и прямая, заданная уравнением Ах + Ву + С = 0. Расстояниеd от этой точкиМдо прямой:


3. Полярные параметры прямой. Нормальное уравнение прямой. Преобразование координат

Полярными параметрами прямой L будут полярное расстояниер (длина перпендикуляра, проведенного к данной прямой из начала координат) и полярный уголα (угол между осью абсцисс ОХ и перпендикуляром, опущенным из начала координат на данную прямую L). Для прямой, представленной уравнением Ах + Ву + С = 0: полярное расстояние



полярный угол α



причем при C > 0 берется верхний знак, при C < 0 – нижний знак, при С = 0 знаки берутся произвольно, но либо оба плюса, либо оба минуса.

Нормальное уравнение прямой (уравнение в полярных параметрах) (cм. рис. 2): x cosα + y sinα – p = 0. Пусть прямая представлена уравнением вида Ах + Ву + С = 0. Чтобы данное уравнение привести к нормальному виду необходимо последнее разделить на выражение

 (знак берется в зависимости от знака С).


Рис. 2


После деления получается нормальное уравнение данной прямой:



Пусть имеется прямая L, которая пересекает оси координат. Тогда данная прямая может быть представлена уравнением в отрезках х / а + у / b = 1. Справедливо: если прямая представлена уравнением х / а + у / b = 1, то она отсекает на осях отрезки а, b.

Преобразование координат возможно путем переноса начала координат, или поворотом осей координат, или совместно переносом начала и поворотом осей.

При переносе начала координат справедливо следующее правило: старая координата точки равна новой, сложенной с координатой нового начала в старой системе. Например, если старые координаты точки М были х, у, а координаты нового начала в старой системе О*(х>0, у>0), то координаты точки М в новой системе координат с началом в точке О* будут равны х – х>0, у – у>0 т. е. справедливо следующее х = х* + х>0, у = у* + у>0 или х* = х – х>0, у* = у – у>0 (* новые координаты точки).

При повороте осей на некоторый угол φ справедливы следующие формулы (где х, у – старые координаты точки; х*, у* – новые координаты этой же точки):

x = x* cosα – y* sinα;

y = x* sinα + y* cosα

или

x* = x cosα + y sin