Воображариум Лобачевского.
© Сергей Гурин. Россия, Рязань, 2025 год.
В декабре 2024 года посетил музей истории Казанского федерального университета. Гид, искренне преданная университету женщина, очень увлечённо и познавательно вела экскурсию. Страстный и насыщенный интересными фактами рассказ об истории университета не мог оставить равнодушным.
Однако, наиболее сильное впечатление оставила ее хвалебная речь о геометрии Н.И. Лобачевского, выдающегося математика, а также одного из ректоров КФУ. К тому же, в этом рассказе был упомянут еще один великий бунтарь ученого мира – А. Эйнштейн и его ТО.
Естественно, после этой оды победе Лобачевского над Евклидовой геометрией, и окончании более чем двухтысячелетней самозабвенной борьбы геометров с пресловутым пятым постулатом Евклида, стало необходимо подробнее познакомиться с предметом.
И, следуя рекомендациям самого Николая Ивановича, знакомство с его геометрией решил начать с работы "Геометрические исследования по теории параллельных линий". В электронной библиотеке КФУ, нашлось одноименное издание АН СССР 1945 года, в переводе и с комментариями, а также вступительными статьями и примечаниями профессора В.Ф. Кагана.
Выводы, к которым пришел при прочтении данной работы, изложил в данной статье.
Начну с предмета «великого геометрического противостояния», завершившегося, как считается, тем самым откровением Лобачевского – пятого постулата Евклидовой геометрии.
Этот постулат или аксиома, в самой распространенной трактовке утверждает, что если две прямые линии пересекает третья прямая линия, и с одной стороны от нее сумма внутренних углов меньше двух прямых углов, то первые две прямые линии с этой стороны обязательно пересекутся (чертеж №1).
Чертеж №1. Представление пятого постулата Евклида в трактовке пересекающихся линий.
Другая популярная трактовка:
–в одной плоскости через точку, не лежащую на прямой линии, можно провести лишь одну другую прямую линию, не пересекающуюся с первой. При этом, внутренние углы с одной стороны от третьей прямой линии, проходящей через ту же точку и пересекающей первые две прямые линии, равны в сумме двум прямым (чертеж №2).
Чертеж №2. Представление пятого постулата Евклида в трактовке единственной параллельной.
И вот эта пятая аксиома Евклидовой геометрии (хотя, как я понимаю, самый ранний из известных текстов с постулатами Евклида моложе его самого более чем на тысячу лет, и как могли измениться первоначальные формулировки, при переписывании за этот срок, одному Евклиду и было бы ведомо), называемая постулатом о параллельности, постоянно будоражила сознание математиков, заставляя их искать доказательства ее истинности. И каждый участник этой борьбы утверждал, что его доказательство лучше, а зачастую и то, что утверждения предыдущих вообще не имеют доказательной силы.