Основы эконометрики в среде GRETL. Учебное пособие - страница 6

Шрифт
Интервал


статистикy, необходимо знать значение стандартной ошибки для коэффициента, оно содержится в столбце «Ст. ошибка». Для переменной стандартная ошибка
. Отсюда можем вычислить
. Для принятия решения о том, можно ли отвергнуть гипотезу H>0, сравним значение
с критическим значением статистики
. Примем уровень значимости
. Как уже было сказано, объем выборки составляет 526 наблюдений, то есть n = 526. Число регрессоров в модели составляет 4 (константа тоже регрессор), то есть, k = 4. Отсюда следует, что нужно искать критическое значение из двустороннего распределения Стьюдента
на уровне значимости 5 % (одностороннее распределение 2,5 %) с 522 степенями свободы. Для поиска критического значения из распределения Стьюдента можно воспользоваться статистическими таблицами, например из [7]. Но можно воспользоваться возможностями GRETL. Для этого в основном меню выберем Инструменты – Критические значения.


Рис. 4.1


В открывшемся окне «Критические значения» выберем вкладку, соответствующую распределению Стьюдента, и введем нужные параметры распределения.


Рис. 4.2


Стоит обратить внимание на то, что в GRETL предполагается для распределения Стьюдента вводить не двустороннюю вероятность, а только правостороннюю вероятность, то есть в нашем случае это 2,5 %. После нажатия клавиши ОК получаем искомое критическое значение

.


Рис. 4.3


После этого сравниваем расчетное и критическое значение статистик для переменной . В нашем случае

(|11,68 | > 1,96), отсюда можно сделать вывод, что гипотеза H>0 отвергается, то есть можно говорить о том, что регрессор значим.

Рассмотренный способ проверки гипотезы незначимости коэффициента при отдельном регрессоре позволяет соотнести теоретические знания о проверке незначимости с практикой. Однако ту же самую процедуру можно несколько упростить. Обратим внимание, что в столбце t-статистика для всех переменных уже указаны расчетные значения статистики. Так, например, для переменной указано полученное нами значение

. Это несколько сокращает процедуру проверки, однако сравнение расчетного и критического значения t-статистики все же приходится проделывать самостоятельно.

Существует еще более простой и быстрый способ проверки незначимости коэффициента.

В рассматриваемом примере p-значение переменной

составляет
, то есть практически равно 0. В этом случае,