Причём по трёхточечной схеме удваивается в том числе и приращение вращательного движения, которое затем сокращается. Покажем это на рисунке (4.1.1.3).
Приращение пути за счёт ЦСУ равно:
∆Rx = (DL – D «2») – (D”2» – DK) = DL – 2 * D «2» + DK
а = (cos (ωt) * (DL + DK) – 2 * D «2») / t>2
Поскольку DL = DK, а угловая скорость (ω) – постоянная, то
|DL – D «2»| = |D «2» – DK|
Отсюда
DL + DК = 2 * D «2»
Тогда
а = (cos (ωt) – 1) * 2 * D «2») / t>2
Воспользовавшись разложением функции (cos (n) – 1) в ряд Тейлора (cos (n) – 1 = -n>2 / 2…), получаем:
a = – ((ωt)> 2 / 2) * 2 * D «2» = ω>2 R,
где D «2» = R
Как видно на рисунке при наличии радиального движения величина приращения (∆Rx) не изменяется, т.к. (-L «2» – «2» K = «2» «3» – «2» «2*»). А вот в тангенциальном направлении ускорение строго зависит от радиального движения, т.к. во-первых, все члены в разностном векторе положительные, а во-вторых, часть поддерживающей силы компенсируется истинной силой Кориолиса-Кеплера. В результате динамическая половина поддерживающей силы обеспечивает только половину классического ускорения Кориолиса.
Для ЦСУ двойка в конечном итоге сокращается, что нивелирует ошибку трёхточечной схемы для движения с центростремительным ускорением. Но то же самое фактически происходит и с ускорением Кориолиса, хотя классическая физика этого почему-то не видит. Если учесть, что половина поддерживающей силы компенсируется за счёт компенсации истинной силы Кориолиса-Кеплера, то двойка в конечном итоге так же, как и в случае с ЦСУ должна сократиться:
а>к = 2 * Vr * t * sin (ω * t / 2) / t = Vr * ω
Таким образом, приращение переносной скорости по абсолютной величине, и поворот радиальной скорости по направлению – это одна и та же физическая величина, которая соответствует одному общему ускорению в тангенциальном направлении, вдвое меньшему классического ускорения Кориолиса.
Приведём физический механизм формирования поворотного ускорения Кориолиса, из которого так же со всей очевидностью следует, что это одна и та же физическая величина. (см. Рис 4.1.2.1).
Радиальное движение может изменить своё направление только при взаимодействии тела с вращающимся радиусом в момент, когда он изменяет своё угловое положение по отношению к прямолинейному радиальному движению. При этом взаимодействие тела с радиусом будет происходить по типу отражения (см. Рис 4.1.2.1, положение 2), ускорение которого никто не подразделяет на самостоятельные составляющие в виде ЦСУ по изменению направления радиальной скорости и ускорения, обеспечивающего приращение линейной скорости переносного вращения.