Записки маркетолога. Чертеж вашего бизнеса - страница 4

Шрифт
Интервал


Рассуждения о том, стоит ли правильно считать выборку, – то же самое, что обсуждать правила математических вычислений на уровне «нравится – не нравится».

Рассмотрим пример из практики. Специалисты отдела маркетинга компании Z (компания работает в массовом сегменте) решили провести исследование в регионе с населением 2,5 млн человек и посчитали, что 350 респондентов достаточно для получения результатов.

Ошибка выборки в данном случае составит ± 5,24% при расчетах в натуральном выражении. В случае расчета в долях, процентах, ошибка выборки рассчитывается в процентных пунктах (п. п.)

Максимальное отклонение от истины в размере 5,24% возможно только в том случае, если результат исследований находится в точке «В», а истина находится в точке «А» или «С» (рис. 2).

Например, мы вычислили, что доля использования антифриза владельцами автомобилей старше 1997 г. в. составляет 10,6% – это результат. Значит истина находится в диапазоне от 5,36% до 15,84%. Вычисление диапазона при получении результата в процентах:

Нижнее значение диапазона: 10,6% – 5,24 п. п. = 5,36%

Верхнее значение диапазона: 10,6% +5,24 п. п. = 15,84%

При расчетах в натуральном выражении, например, результат равен 100 автовладельцам, истина находится в диапазоне от 95 до 105 автовладельцев. Расчет:

Нижнее значение диапазона:

100 автовладельцев – 5,24% = 95 автовладельцев.

Верхнее значение диапазона:

100 автовладельцев +5,24% = 105 автовладельцев.

Большое это расхождение или маленькое? Возможно ли при таком отклонении делать объективные выводы для эффективной работы бизнеса?



В целом, ошибка допустимая. И с полученными данными можно работать. Но! Дальше – интереснее. Сотрудники маркетингового отдела компании Z принимают следующее решение. Так как исследование по региону происходило в определенных населенных пунктах, то почему бы не провести аналитику полученных данных по каждому населенному пункту?

Такое решение принимают без учета того, что ошибку выборки необходимо пересчитывать заново, уже под конкретный населенный пункт.

Например, в городе с населением 250 тыс. человек было опрошено 20 респондентов. Ошибка выборки в данном случае составит уже ± 21,91% (рис. 3).



Что мы получаем в итоге. У нас есть результат исследований: доля потребления антифриза владельцев автомобилей старше 1997 г. в. составляет 10,6%. Вычисляем крайние значения, в которых может находиться истина: