Логика - страница 39

Шрифт
Интервал


Отношения между суждениями отражены в схеме, получившей название «логический квадрат». Вершины квадрата отражают простые категорические суждения: левая верхняя – общеутвердительное (А); правая верхняя – общеотрицательное (Е); левая нижняя – частноутвердительное (I); правая нижняя частноотрицательное (О); стороны и диагонали отражают логические отношения между суждениями.



В зависимости от степени совпадения мысли отношения совместимости могут быть в виде эквивалентности, логического подчинения, частичного совпадения (субконтрарности).

Эквивалентные суждения выражают одну и ту же мысль в различной форме. Например: «Для того чтобы всегда говорить правду, требуется сила духа» и «Правдивые люди – сильные духом». Субъект здесь один, а предикаты различные по форме, но одинаковые по смыслу.

Различия между высказываниями, содержащими эквивалентные суждения, проявляются главным образом в языке. Например, такие суждения могут выражаться на различных национальных языках: «В этой стране много аэродромов» и «There are a lot of airfields in this country» или «Dieses Land hat viele Flugplatze». Эту особенность эквивалентных суждений важно учитывать при анализе международных нормативных правовых актов, используемых в нашей стране, при переводе текста с одного языка на другой, при сравнении утверждений в процессе дискуссии.

Отношения между простыми эквивалентными суждениями с помощью логического квадрата не иллюстрируются.

Логическое подчинение выражает отношение одинаковых по качеству связки суждений, имеющих общий предикат («А» и «I», «Е» и «О»). Понятия, выражающие субъекты двух таких суждений, находятся в отношении логического подчинения (более узкое, или частное, понятие подчиняется более широкому, более общему). Общее суждение – подчиняющее, частное – подчиненное. Среди простых суждений в таком отношении находятся общие и частные суждения одного и того же качества (это хорошо видно на схеме логического квадрата).

Для логического подчинения характерны следующие зависимости:

• если истинно общее суждение, истинно и частное (А → I, Е → О);

• если частное суждение ложно, то и общее – ложно (¬I → ¬A, ¬ О → ¬E);

• если общее суждение ложно, частное может быть как истинным, так и ложным;

• если частное – истинно, то общее может быть и истинным, и ложным.