Фактически же, в силу того что идеальный формализм построить очень трудно, «неидеальные» формализмы использовались так, как будто они являются идеальными, т.е. естественно-языковые фрагменты доказательств опускались, становясь частью устной традиции, что делает работы по математической логике почти абсолютно герметичными для людей не принадлежащих к находящимся в неформальном общении между собой специалистам, которые именно при этом неформальном общении устанавливают единый способ понимания публикуемых ими текстов. Таким образом, вопрос о природе формальных логических систем естественно переносится из плана семиотики в план социолингвистики. К этому вопросу мы еще вернемся ниже.
Продолжим, однако, обсуждение парадоксов математической логики. Существуют весьма различные точки зрения на их роль в развитии этой науки. Одна из этих точек зрения приведена выше и отрицает позитивную роль парадоксов. Существует и прямо противоположное мнение [Hofstadter, 1979], подчеркивающее их решающую роль в развитии математической логики.
Что касается проблемы разрешения парадоксов, то они не могут, по-видимому, быть «разрешены» в рамках существующих формальных систем, а вопрос о пользе построения формальных систем, в которых подобные парадоксы не возникают, зависит от доказательных возможностей подобных систем [Френкель, Бар-Хиллел, 1966].
Рассматривая «парадокс лжеца»21, можно заметить, что с точки зрения содержательной логики возможны различные подходы к его пониманию и, следовательно, устранению.
1. Последовательное различение текста и метатекста в высказывании.
2. Признание грамматически правильными только те высказывания, все элементы которых контекстно согласованны. В наиболее яркой форме контекстная несогласованность проявляется в следующей форме записи «парадокса лжеца»: «Высказывание, следующее за данным, истинное. Высказывание, предшествующее данному, ложно».
3. Последовательное различение структуры и оценки в высказывании в духе упомянутой выше работы В. Виндельбандта. При этом оценка не может рассматриваться как предикат, а именно такая ситуация имеет место в «парадоксе лжеца».
4. Принять «самоописывающиеся» выражения как интуитивно допустимый, особый класс выражений и попытаться научиться производить с ним формально-логические операции. Именно эта точка зрения принята в «Gjdel, Escher, Bach» и «Доказуемое и недоказуемое» [Hofstadter, 1979; Манин, 1979].