Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 5: Методы изучения взаимозависимостей в обществоведении - страница 32

Шрифт
Интервал


A. Аргумент Doomsday содержит внутреннее противоречие. Представим себе, что несколько десятков тысяч лет назад численность народонаселения составляла в общей сумме (вместе с умершими) 1000 человек. Предположим, что эти люди – фаталисты, уверенные, что грядет конец света, и оценивают общее число всех людей своей расы, вплоть до этого конца в 10>6. Как мы знаем, сейчас число всех когда-либо живших людей составляет около 60 млрд человек5. Примем, что p>S = p>L = 0,5. Тогда формула (1) дает



Другими словами, фактически со 100%-ной гарантией эти люди должны были оказаться правы в своих апокалиптических ожиданиях. Вероятность же текущего положения дел (на начало XXI в.) составила бы лишь 0,000017. Тем не менее, как мы знаем, именно это практически невероятное состояние человечества имеет место. Таким образом, древние люди совершили бы огромную ошибку, полагаясь на формулу (1). Но тогда почему мы должны доверять этой формуле?

B. Аргумент Doomsday дает заведомо неправильный ответ. Здравый смысл подсказывает, что вероятность p (S|N) должна быть равна просто p>S. Очевидно, где‐то имеется ошибка в вычислениях.

Кен Олум утверждает, что знает где. Вот его рассуждения: для нахождения условной вероятности p (S|N) мы перемножили два числа (опуская нормировочный множитель):

p (S|N) ∼ p>S p (N|S), (3)

тогда как правильное выражение имеет вид

p (S|N) ∼ p>S p (N|S)N>S. (4)

Вводя в (4) нормировочный множитель, имеем



Ответ получается разумным, но почему нам следует использовать предписание (4), а не (3)? Согласно Олуму, для правильного вычисления p (S|N) необходимо перемножить три вероятности: вероятность того, что мы находимся в короткоживущей цивилизации (p S), условную вероятность того, что я N-й человек (p (N|S)), и p (N>S|I) – условную вероятность того, что я нахожусь в короткоживущей цивилизации, при условии, что «я есть». Последнее выглядит странно и нуждается в пояснении. Суть дела в том, что сам факт моего существования служит аргументом в пользу того, что я нахожусь в долгоживущей цивилизации, насчитывающей большое число людей. Другими словами, вероятность p (N>S|I) должна быть пропорциональна полному числу людей – N>S. Для того чтобы сделать этот вопрос максимально ясным, рассмотрим (вслед за Кен Олумом) следующую гипотетическую игровую ситуацию. Пусть некое высшее существо (Олум называет ее богиней) имеет в запасе отель, содержащий 10