Уникальная формула и алгоритм в квантовых вычислениях. Открытие новой парадигмы - страница 4

Шрифт
Интервал


– Как и вектор $\boldsymbol {\theta} $, каждый параметр $p_i$ вектора $\boldsymbol {p} $ определяет угол вращения соответствующего кубита в системе.

– Этот заданный набор параметров $\boldsymbol {p} $ используется в операции сложения по модулю 2 $ (\boldsymbol {x} + \boldsymbol {p}) \bmod 2$.


4. $n$ – количество кубитов в системе:

– $n$ представляет собой число кубитов, на которых применяется формула $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $.

– Количество кубитов влияет на размерность входных данных $\boldsymbol {x} $, наборов параметров $\boldsymbol {\theta} $ и $\boldsymbol {p} $, а также на размерность состояния системы кубитов.


Определенные выше переменные $\boldsymbol {x} $, $\boldsymbol {\theta} $, $\boldsymbol {p} $ и $n$ играют важную роль в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $, определяя входные данные, параметры вращения кубитов и размерность системы кубитов.

Определение переменной $\boldsymbol {x} $

Определение переменной $\boldsymbol {x} $ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $:


В формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $, переменная $\boldsymbol {x} $ представляет собой входные данные для операции. Она представляет собой вектор, содержащий набор битовых значений, где каждый бит соответствует состоянию одного кубита в системе.


Подобно классической битовой последовательности, элементы вектора $\boldsymbol {x} $ могут принимать значения 0 или 1. Величина и размер вектора $\boldsymbol {x} $ зависят от конкретного применения формулы и количества кубитов в системе.


Набор входных данных $\boldsymbol {x} $ является необходимым элементом формулы $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $, поскольку он определяет состояние исходных кубитов перед применением оператора Адамара и операции сложения по модулю 2.


Входные данные $\boldsymbol {x} $ могут быть представлены в виде двоичной последовательности или битовой строки, где каждый бит соответствует состоянию одного кубита в системе.


Пример:

Если у нас есть система из 3 кубитов, то вектор $\boldsymbol {x} $ будет иметь размер $n = 3$ и может быть представлен, например, следующей битовой строкой: $\boldsymbol {x} = 011$. Здесь первый бит равен 0, второй бит равен 1, а третий бит равен 1. Это означает, что первый кубит в системе находится в состоянии $|0\rangle$, второй и третий кубиты находятся в состоянии $|1\rangle$.