Уникальная формула и алгоритм в квантовых вычислениях. Открытие новой парадигмы - страница 5

Шрифт
Интервал



Использование переменной $\boldsymbol {x} $ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ влияет на изменение состояния кубитов и результат операции. Результат формулы будет зависеть от конкретных значений и комбинации битов в векторе $\boldsymbol {x} $.

Определение переменной $\boldsymbol {\theta} $

Определение переменной $\boldsymbol {\theta} $ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $:


В формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $, переменная $\boldsymbol {\theta} $ представляет собой набор параметров для вращения кубитов в системе. Она также представляет собой вектор, содержащий набор углов $\theta_i$, где каждый угол соответствует вращению соответствующего кубита.


Число и размер углов вектора $\boldsymbol {\theta} $ зависит от конкретного применения и количества кубитов в системе. Каждый угол определяет угол вращения для соответствующего кубита в системе. Углы могут быть представлены в радианах или других удобных единицах измерения.


Набор параметров $\boldsymbol {\theta} $ используется для управления вращением кубитов в системе. Как каждый кубит в системе вращается в соответствии с соответствующим углом $\theta_i$ из вектора $\boldsymbol {\theta} $, это оказывает влияние на состояние каждого кубита и, следовательно, на общий результат операции формулы $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $.


Пример:

Предположим, у нас есть система из 2 кубитов. Тогда вектор $\boldsymbol {\theta} $ может иметь размер $n = 2$ и содержать углы вращения для каждого кубита: $\boldsymbol {\theta} = (\theta_1, \theta_2) $.

Например, $\boldsymbol {\theta} = \left (\frac {\pi} {2}, \frac {\pi} {4} \right) $. Здесь первый кубит поворачивается на угол $\frac {\pi} {2} $, а второй кубит поворачивается на угол $\frac {\pi} {4} $. Эти углы определяют вращение каждого кубита и влияют на итоговое состояние кубитов после применения формулы.


Параметры $\boldsymbol {\theta} $ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ позволяют управлять поведением системы кубитов и настраивать их состояния в соответствии с конкретными потребностями и задачами. Значения и комбинации параметров $\boldsymbol {\theta} $ будут влиять на финальный результат операции формулы.