Криптографические горизонты с формулой F. Инновационные методы безопасности - страница 5

Шрифт
Интервал



Операция сложения по модулю 2 часто используется в различных областях, включая криптографию, обработку изображений и коррекцию ошибок в связи с её простотой и эффективностью.


2. Операция XOR (исключающее ИЛИ):

Операция XOR также выполняется над двоичными числами и имеет следующие правила:


– Если два бита равны, результат будет 0: 0 XOR 0 = 0 и 1 XOR 1 = 0.

– Если два бита различны, результат будет 1: 0 XOR 1 = 1 и 1 XOR 0 = 1.


В отличие от операции сложения по модулю 2, операция XOR не отбрасывает старшие биты и сохраняет все биты результата. Таким образом, результатом операции XOR над двоичными числами будет новое двоичное число, в котором каждый бит представляет результат XOR для соответствующих битов исходных чисел.


Операция XOR широко применяется в программировании и информатике в областях, связанных с проверкой четности, шифрованием, кодированием и контролем целостности данных.


Использование операции сложения по модулю 2 и операции XOR в формуле F (входные данные, параметры вращения) = H^n (входные данные ⊕ параметры вращения) H^n позволяет нам комбинировать эти математические операции с оператором Адамара, получая уникальное преобразование входных данных и параметров вращения в квантовых системах.

Определение операции сложения по модулю 2 и её свойства

Операция сложения по модулю 2 (также известная как побитовое сложение по модулю 2) является математической операцией, которая выполняется над двоичными числами по отдельности для каждого бита. Она имеет следующие свойства:


1. Замкнутость. Операция сложения по модулю 2 закрыта для двоичных чисел. Это означает, что результатом сложения двух двоичных чисел по модулю 2 также является двоичное число.


2. Коммутативность. Порядок слагаемых не влияет на результат операции сложения по модулю 2. Например, a + b ≡ b + a для любых двух двоичных чисел a и b.


3. Ассоциативность. Результат сложения трех или более двоичных чисел по модулю 2 не зависит от их порядка. Например, (a + b) + c ≡ a + (b + c) для любых трех двоичных чисел a, b и c.


4. Идемпотентность. Если двоичное число складывается по модулю 2 с самим собой, то результат будет 0. Например, a + a ≡ 0 для любого двоичного числа a.


5. Инверсность. Каждое двоичное число является инверсом самого себя относительно сложения по модулю 2. Например, a + a ≡ 0 и a +0 ≡ a для любого двоичного числа a.